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ABSTRACT

Free jets and other shear flows often occur in nature
and various technologies and are widely studied. Turbu-
lent jets and their breakdown have been thoroughly stu-
died over several decades in the context of many indust-
rial applications, including mixing, combustion, noise
generation and others.

Laminar jets are studied much less because of their
immediate breakdown at normal conditions due to ex-
tremely small critical Reynolds number (∼ 20). In pub-
lished experimental studies of free jets with the Reynolds
number of ∼ 4000 or greater, the transition to turbulence
occurs near the orifice. However, in our previous work
(Zayko et al., Physics of Fluids, 2018) we demonstrate a
new method for the formation of free jets of 0.12 m dia-
meter, with the Reynolds number of 10,000 and the lami-
nar region length of 5 jet diameters.

In this study, we investigate the perturbation growth
in the long laminar jet. Perturbations are introduced
through a metal oscillating foil strip. Results of the laser

visualization are compared with theoretical predictions
of the linear stability analysis. Impact of the perturba-
tion frequency on the laminar portion length of the per-
turbed jet is in a reasonable agreement with the theoreti-
cal prediction.

INTRODUCTION
In the linear stability theory of shear flows, only a

few classical results have been carefully tested experi-
mentally. For the Blasius boundary layer, the first di-
rect confirmation of theoretical prediction was conducted
in [1], followed by several refined studies [2]. For the
plane Poiseuille flow, experimental confirmation of theo-
retical neutral curve was done in [3,4]. Linear stability of
Poiseuille flow in a round pipe for any Reynolds number
can also be considered as experimentally verified, at least
up to Re∼ 100000 [5].

However, for free shear flows, such as jets and wakes,
situation is more complicated. In this case, an invis-
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cid inflection-point mechanism, which is much stronger
than the viscous instability in bounded flows, prevents the
experimental observation of laminar flows at sufficiently
large Reynolds numbers. The flow becomes turbulent
immediately near its origin, and no perturbation growth
study in laminar flow can be experimentally done.

Recently, we invented a novel method for the forma-
tion of laminar jet flows [6], which produces the jets of
D = 0.12 m in diameter that stay laminar at the distance
5.5D from the orifice for the Reynolds number ∼ 10000.
Such characteristics provide a convenient way to investi-
gate experimentally the perturbation growth in a free jet.
In this study we start such an investigation. By compa-
ring experimental results with theoretical stability analy-
sis, we conclude that the perturbation growth follows the
prediction of the linear stability theory up to the transition
region of the jet.

EXPERIMENTAL APPARATUS
The experimental apparatus consists of the air sup-

ply device (pipeline), the forming device and the mea-
surement system. The forming device’s picture and the
draft are shown in Fig. 1. Air flows from the gasholder
to the forming device via the pipeline (1). Then it enters
the forming device’s first section through the short pipe.
This section is the cylindrical channel of 0.04 m in dia-
meter, where the flow is smoothened passing through the
perforated plate (2), which also reduces the spatial scale
of turbulent fluctuations. After the plate, the flow passes
through a bushing with metal grids (3) of 0.05 m in length
which is located at the distance of 0.03 m downstream
from the perforated plate which reduces turbulence level.
The second section of the forming device (short diffuser)
is located at the distance of 0.06 m downstream from the
bushing. At the length of 0.04 m, the flow expands to the
diameter of 0.12 m through the diffuser (4) from which
the jet flows to the atmosphere. For low incoming turbu-
lence, the diffuser wall shape and the grid package (5) at
the diffuser outlet provide low outcoming turbulence and
0.12 m diameter jet of the profile with almost constant
velocity at the central core of 0.05 m in diameter. Details
of the jet forming device, as well as measurements of the
produced jet profiles at different Reynolds numbers can
be found in [6].

The jet visualization system is shown in Fig. 2. It con-
sists of laser KLM-532 (1) and video camera Bonito CL-
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FIGURE 1: The photograph (a) and the draft (b) of the
forming device. The pipeline from the gasholder (1), the
perforated plate (2), the bushing with metal grids (3), the
short diffuser (4) and the grid package (5).
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FIGURE 2: The draft of the visualisation system and the
apparatus for the introduction of perturbations. Laser (1),
video camera (2), aerosol generator (3), hose (4), laser
light sheet (5) and jet (6). Oscillating foil strip (7), elec-
tromagnets (8), controller (9), power supply (10).

400B (2). Light-reflecting glycerin particles of ∼ 10 µm
in diameter are generated at the aerosol generator (3) and
introduced to the flow through the hose (4). A segment of
the jet is illuminated by the laser light sheet (5). The im-
age is taken by the camera, whose optical axis is normal
to the plane of the laser light sheet.
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FIGURE 3: Mean velocity profile for Uc = 1.5 m/s (Re =
5680) at the distances x/D = 0.01, 0.04, 0.1, 0.25, 0.5, 1,
2, 3 from the orifice.
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FIGURE 4: Location of the inflection points ri and velo-
city at the inflection points ui =U(ri) versus the distance
from the orifice.

Perturbations are introduced into the jet by the os-
cillating foil strip (7) installed at the distance ∼ 5 mm
from the diffuser along its diameter (figure 2). The foil is
placed into the slit of the electromagnets cores (8), and os-
cillates with the specified amplitude and frequency. The
oscillation frequency is governed by the controller (9),
whose voltage is supplied by the power source (10).

THEORETICAL STABILITY ANALYSIS OF A JET
Problem formulation

To theoretically analyse the evolution of artificial per-
turbations produced by the oscillating foil strip, we per-
formed the spatial stability analysis of the jet. After the
linearisation of the Euler equations around the steady jet
flow with a given velocity profile U(r), a single Rayleigh

equation for the radial velocity perturbation for round jets
in a cylindrical coordinate system can be derived [7]:

(U(r)− c)
d
dr

(
r

n2 +α2r2
d(rG(r))

dr

)
−

(U(r)− c)G(r)− rG(r)
d
dr

(
rU ′(r)

n2 +α2r2

)
= 0, (1)

where G(r) is the amplitude of the radial velocity fluctu-
ation: ur = iG(r)ei(αx+nϕ−ωt), α ∈ C and n ∈ Z are axial
and azimuthal wave numbers, ω ∈R is the frequency and
c = ω/α is the phase speed.

Perturbation G(r) should satisfy two boundary condi-
tions. First, at the jet boundary r = 1, the solution should
match the zero-mean-velocity solution of the Rayleigh
equation satisfying the radiation condition at r = ∞. This
yields [6]

G′(r)
G(r)

=
K′′n (αr)
K′n(αr)

, r = 1, (2)

where K′n(αr) is the derivative with respect to r of mod-
ified Bessel functions of the second kind. The second
boundary condition at r = 0 is not as obvious and was
discussed in detail in [7]. It can be summarised as

G(0) = 0, n = 0,

G′(0) = 0, n = 1,

G(r)∼ rn−1, r→ 0, n > 1 .

(3)

For each ω ∈ R, n ∈ Z the boundary-value problem
for the Rayleigh equation (1), (2), (3) defines an eigen-
value problem to find α(ω,n) ∈C. Then the perturbation
wave length is found as λ = 2π/Reα , and δ =− Imα is
the perturbation growth rate.

For the sake of brevity, we consider here only axisym-
metrical perturbation, n = 0. Clearly, perturbations that
we have in the experiment are not axisymmetric; how-
ever, calculations show that for the first several non-zero
n the eigenvalue analysis results are very close to those
at n = 0 [6], so that the prediction obtained for n = 0 is
valid for perturbations having several first components of
the Fourier expansion in n. For arbitrary perturbations,
qualitative agreement should be expected.
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FIGURE 5: Theoretical spatial growth rate δ versus exci-
tation frequency Ω at different distances from the diffuser
(color coding corresponds to Fig. 3).
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FIGURE 6: Theoretical wave length λ versus excitation
frequency Ω.

Steady velocity profile
Mean velocity profiles calculated at different dis-

tances from the diffuser outlet are shown in Fig. 3. It
is seen that due to the action of viscosity, initial steep
drop of the velocity near the jet boundary becomes
smoothened, whereas internal velocity distribution is al-
most not changed.

It is known that instability of free shear flows is
driven by the inviscid inflection-point mechanism. For
the case of round jets, the necessary instability condition
for axisymmetric perturbations is given by the equation
(U(r)′/r)′ = 0, which is a generalization of inflection-
point condition for planar flows to round flows. Below
for the sake of brevity we will refer to the solutions of this
equation as inflection points. Figure 4 shows the location
of these points for the calculated mean profiles. It is seen
that at the orifice there are three inflection points, but fur-

ther downstream two of them merge and disappear, and
only one inflection point closest to the jet axis remains at
x/D > 1.5.

Results
For the velocity profiles near the orifice that have

three inflection points, two branches of growing pertur-
bations exist. The first branch is generated by two inflec-
tion points farthest from the jet axis. Further downstream,
when these inflection points disappear, this branch of per-
turbations becomes damped. The second branch is gen-
erated by the infection point closest to the jet axis and
remains growing arbitrarily far from the orifice. Calcu-
lated spatial growth rates (Fig. 5) show that while the
first branch exists, its growth rate is much larger than
of the second branch. But when this branch becomes
damped, only the second branch generates instability. It
is worth noting that the frequency range of growing per-
turbations is similar for both branches and corresponds to
0 < Ω < 14 Hz (except for extreme closeness to the ori-
fice). The frequencies Ω = 4−6 Hz corresponding to the
maximum growth are also similar for both branches.

Figure 6 shows that wavelengths of the first branch
are essentially shorter than of the second, which provides
a clear way to experimentally distinguish observed per-
turbation branches.

EXPERIMENTAL STUDY OF PERTURBATION
GROWTH

We study the perturbation growth in the laminar jet at
the Reynolds number Re = 5680 (the velocity at the jet
axis Uc = 1.5 m/s), for which the length of the laminar jet
portion in the unperturbed condition is ∼ 0.6 m. We aim
to show that introduced perturbations with the frequen-
cies from the range 4 – 6 Hz (corresponding to the theo-
retical maximum growth rates) grow spatially and yield
the shortening of the laminar jet length, whereas, for the
frequencies beyond this range the influence of the intro-
duced perturbations on the laminar jet is not as essential.

Visualized flow patterns for various perturbation fre-
quencies are shown in Fig. 7. In the absence of oscilla-
tions the foil presence in the jet does not affect the laminar
region length. The visualization shows that the shortest
laminar portion of the jet occurs for the frequencies 5 and
6 Hz. High frequencies (more than 10− 15 Hz) do not
significantly shorten the laminar jet length. Values of the
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FIGURE 7: Impact of the oscillating foil strip on the lam-
inar jet length for various oscillation frequencies. Visual-
ization by glycerin particles and laser sheet.
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FIGURE 8: Length of the jet laminar region llam versus
foil strip frequency Ω.

FIGURE 9: Wave length definition from the visualization
of the jet perturbed with the frequency 4 Hz.

laminar jet lengths for various frequencies of the foil strip
oscillations are shown in Fig. 8.

For each introduced frequency (2,4,5,6,8,10,15 Hz)
the wave lengths of perturbations before the jet turbulisa-
tion are obtained from the visualization. We analyze the
waves of small amplitude, near the jet origin (Fig. 9), be-
cause experimental wavelengths are compared with linear
stability theory results.

Theoretically and experimentally obtained wave-
lengths are compared in Fig. 10. Experimental points are
close to theoretical curves or higher, except for the results
for the frequency 2 Hz. We see that experimental values
are in agreement with modal theory predictions for the
frequencies 4 and 5 Hz, which lies in the range of fre-
quencies 4 – 6 Hz for the perturbations with maximum
growth rates. For larger frequencies, experimental points
are higher than corresponding theoretical curves. This is
explained by non-axisymmetry of experimental perturba-
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FIGURE 10: Theoretical (color curves) and experimental
(black points) wavelengths λ versus excitation frequency
Ω.

tions, whereas in theoretical investigation only axisym-
metric perturbations are considered. For larger n, corres-
ponding to non-axisymmetric perturbations, theoretical
axial wave number α is smaller, that is, the wavelength
λ is higher, which explains higher experimental values of
the wavelengths in comparison with axisymmetric theo-
ry. From Fig. 10 we conclude that perturbations excited
in experiment belong to the first, strong branch of pertur-
bations, generated by the inflection point closest to the jet
boundary, which is an agreement with theoretical expec-
tations.

CONCLUSION
An axisymmetric laminar jet stability is theoretically

analyzed for the jet profiles produced by the apparatus,
which forms long laminar jets of 0.12 m in diameter for
Re = 2000− 12000. For the regime Re = 5680, two
branches of growing perturbations exist, for both of them
the frequency range for the fastest growing perturbations
is 4−6 Hz.

The influence of the perturbations produced the os-
cillating foil strip on the laminar jet is experimentally in-
vestigated. It is shown that experimental wavelengths of
perturbations are in agreement with linear stability theo-
ry predictions. The shortest laminar region of the per-
turbed jet is observed for excitation frequencies 5 and
6 Hz, which is also in agreement with the theory.

As the next step, we plan to modify the apparatus for
perturbation introduction to perform the experiments with
axisymmetric perturbations for more accurate compari-
son of experimental and theoretical results.
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