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Abstract — The stability of an elastic plate in the form of a wide strip in a supersonic inviscid gas flow
is investigated in the linear approximation. An expression for the dependence of the pressure on the plate
deflection, asymptotically exact for wide plates, is used. Two qualitatively different instability types are
obtained: flutter with respect to a single oscillatory mode due to negative aerodynamic damping and
flutter of a related type due to the interaction of oscillatory modes. For each type the stability criterion
and the frequency at which the oscillation amplitude grows most intensely are found.
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In [1–11], the problem of the flutter of an elastic plate in a supersonic gas flow was considered in various
formulations. The solution reduced to finding the eigenvalues of a certain operator, and the presence or
absence of flutter was determined by their position in the complex plane. For the gas pressure, as a rule
[2–4, 7–9], the piston theory [3] or its modifications valid for fairly high Mach numbers were used and the
eigenvalue problem was solved numerically.

In this study, the eigenvalue problem is solved using an asymptotic method for long domains, known as
global instability theory [12; 13, § 65], while the gas pressure is represented by an expression asymptotically
exact as the plate width L → ∞ over the entire range of Mach numbers M > 1. The conditions for which
a wide strip plate in a supersonic gas flow has growing global eigenfunctions are found analytically. Their
mechanism of origin and destabilization, which admits a physically transparent interpretation, is described.

1. FORMULATION OF THE PROBLEM

We will investigate in the linear approximation the stability of a stretched elastic plate in the form of an
infinite strip exposed on one side to a homogeneous supersonic flow and balanced by a constant pressure on
the other. The gas velocity vector is parallel to the plate plane and the angle between the flow direction and
the plate edges is equal to π/2 − θ (Fig. 1), 0 ≤ θ < π/2. We assume that the gas is inviscid and perfect
and the flow adiabatic; the plate obeys the classical bending equation for a thin plate.

We introduce a system of coordinates tied to the plate with the x axis lying in the plane of the plate
perpendicular to the edges, the y axis parallel to the edges, and the z axis normal to the plate so that the
coordinate system xyz is positively oriented. We will assume that in the undisturbed case the gas flows in the
region z > 0 and the plate occupies the region |x| ≤ Lw/2, z = 0, where Lw is the plate width. At |x| > Lw/2
the surface z = 0 is assumed to be absolutely rigid.

In dimensionless variables the differential equations describing the evolution of small perturbations in-
dependent of the y coordinate can be written as follows:
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Fig. 1. Configuration of the system considered
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(1.1)

Here, ϕ and w are the dimensionless gas perturbation potential and the plate deflection. The first equation
is the wave equation, the second is the impermeability condition, the third is the condition of perturbation
damping in the gas far from the plate, the fourth is the equation of plate motion, and the fifth is the boundary
conditions on the plate edges (Fj are differential operators that determine two conditions at each edge). The
dimensionless parameters are

M =
ucos θ

a
, Mw =

√
σ/ρm

a
, D =

Dw

a2ρmh3 L =
Lw

h
, µ =

ρ
ρm

Here, u and ρ are the gas velocity and density, a is the speed of sound in the gas, σ is the tensile
stress in the mid-plane of the plate, ρm and h are the material density and the plate thickness, and Dw =
Eh3/(12(1 − ν2)) is the flexural stiffness of the plate. The parameter Mw is the ratio of the long-wave
propagation velocity in the plate to the speed of sound in the gas. The expression for µ is given for the
case of unilateral flow; in the case of bilateral flow of the same gas past the plate at the same velocity, the µ
value should be doubled. The parameters M, Mw, D, and µ are independent of the plate thickness. We will
assume that M > 1 and L � 1.

We note that in real systems µ � 1/
√

D. For example, for a steel plate (ρm = 8500 kg/m3, E =
2 · 1011 N/m2, and ν = 0.3) in an air flow under normal conditions (ρ = 1 kg/m3 and a = 300 m/s) we
obtain D ≈ 23.9 and µ ≈ 1.2 ·10−4. This makes it possible, in solving problem (1.1), to regard µ as a small
parameter, as we shall do below.

2. GLOBAL INSTABILITY OF ONE-DIMENSIONAL SYSTEMS

In [12; 13, §65], sufficient instability conditions were obtained for the homogenous states of one-dimen-
sional, highly extended systems of general form. Two types of instability were found: unilateral, determined
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by the boundary conditions at one end of the system, and global, independent of the boundary conditions.
The boundary conditions traditionally used for a plate: ∂w/∂x = w = 0 at a fixed edge, ∂ 2w/∂x2 = w = 0
at a hinged edge, and ∂ 2w/∂x2 = ∂ 3w/∂x3 = 0 at a free edge do not satisfy the requirement of unilateral
instability of plane perturbations.

The global instability criterion is as follows. Consider the dispersion equation of an unbounded (that
is, occupying the entire spatial x axis) system F(k, ω) = 0, where k is the wave number and ω is the
complex perturbation frequency. For sufficiently large Imω , its solutions k j = k j(ω), numbered in order of
decreasing imaginary part, can be divided into two groups in one of which Im k j > 0 ( j = 1, . . . , s) while
in the other Imk j < 0 ( j = s + 1, . . . , N), the number of roots in each group being equal to the number of
boundary conditions assigned at one of the ends of the finite system. Each root determines a certain branch
of the multivalued analytical function k = k(ω). With decrease in Imω the imaginary parts of the roots
decrease in the first group and increase in the second, and at a certain ω the following equality holds:

min
1≤ j≤s

Imk j = Imkm = Imkn = max
s+1≤ j≤N

Imk j

The set of these ω values defines a curve Ω in the complex ω-plane. For a sufficiently long finite system,
part of its eigenvalue spectrum lies near this curve, the more often and the closer to it the longer the system
[12; 13, §65]. As L → ∞, far from the system boundaries, the eigenfunctions corresponding to these natural
frequencies then take the asymptotic form

(Cmeikm(ω)x + Cneikn(ω)x)e−iωt

Here, Cj are certain constants and i is the imaginary unit. For system instability it is sufficient for a part
of the curve Ω to lie in the region Imω > 0. This is the global instability condition.

3. DISPERSION EQUATION FOR AN UNBOUNDED PLATE IN A GAS FLOW

Let us now investigate the system described in Section 1. For plane perturbations of a plate infinite in all
directions in a unilateral gas flow, the dispersion equation can be written in the form [14, 15]:

(Dk4 + M2
wk2 − ω2) − µ

(ω − Mk)2√
k2 − (ω − Mk)2

= 0 (3.1)

Here, k is the wave number and ω is the complex perturbation frequency. The first term describes the
contribution of the elastic and inertia plate forces and the second the contribution of the aerodynamic forces
acting on the plate. For Imω � 1, in the second term the value of the square root should be so chosen
that its real part is positive, which follows from the requirement that the gas perturbations to be damped
with distance from the plate. For other Im ω we so choose the square root branch that the solutions k(ω)
of Eq. (3.1) are analytically continuable from the region Im ω � 1 along the rays Reω = const, while
remaining solutions of (3.1).

In order to study the behavior of the roots k(ω) of Eq. (3.1), we will consider the equation

(Dk4 + M2
wk2 − ω2) + µ

(ω − Mk)2√
k2 − (ω − Mk)2

= 0 (3.2)

Multiplying the left sides of (3.1) and (3.2) gives a polynomial that for any ω has ten roots k, each of
which is a root of either (3.1) or (3.2). We will consider in the complex plane ω the cuts separating different
branches of the radical in (3.1) and (3.2), that is, the curves specified by the equation

k(ω)2 − (ω − Mk(ω))2 = α , α ∈ R, α < 0
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After numerically constructing the cuts for certain parameters of the problem and taking any ω lying
above them, we see that among all the roots of the polynomial Eq. (3.1) is satisfied by four which at large
Imω asymptotically approach the roots of the dispersion equation for an unbounded plate in a vacuum
(µ = 0) and that each group (see Section 2) contains two roots. In accordance with general ideas and the
global instability criterion we need to track the behavior of only these k(ω) branches.

If a pair (ω , k) satisfies the dispersion equation (3.1), the latter is also satisfied by the pair (ω ′, k′),
where the prime denotes reflection about the imaginary axis. Therefore, the curve Ω is symmetrical about
the imaginary ω axis, which enables us to restrict ourselves to seeking points on the curve Ω in the right
half-plane of the complex plane ω .

4. GLOBAL INSTABILITY OF HIGH-FREQUENCY PERTURBATIONS
OF A FINITE-WIDTH PLATE IN A GAS FLOW

In this section, we will assume µ to be a small parameter. We will also assume that ω � µ and k � µ ,
which makes it possible to eliminate the low-frequency perturbations from consideration. Let ω ∈ R and
ω > 0. For µ = 0 the dispersion equation has four roots k, of which two are real and two are pure imaginary
and complex conjugate. We will denote the real positive root by k2 = k2(ω , 0) and the negative root by
k3 = k3(ω , 0) = −k2. These roots correspond to eigenfunctions in the form of harmonic waves that travel
in opposite directions at the same phase velocity. We will find the increments of the roots for small µ 	= 0,
that is, for a plate in a gas flow, and a frequency ω + iδ (δ > 0, δ � 1)

k j(ω + iδ , µ) = k j + iδ
∂k j

∂ω
+ µ l(k j)

From the dispersion equation (3.1) we obtain

l(k j) =
(ω − Mk j)

2

2k j(M2
w + 2Dk2

j)
√

k2
j − (ω − Mk j)2

(4.1)

It is easy to show that ∂k2/∂ω > 0 and ∂k3/∂ω < 0. Then, if Im l(k2) < Im l(k3), for any fixed small µ
we can find a δ such that Imk2(ω + iδ , µ) = Imk3(ω + iδ , µ), which signifies global instability. Thus,
the inequality Im l(k2) < Im l(k3) is a sufficient condition for instability; substituting (4.1) in this inequality
and renaming k2 = k and k3 = −k, we obtain

Im


 (ω + Mk)2√

k2 − (ω + Mk)2
+

(ω − Mk)2√
k2 − (ω − Mk)2


 < 0 (4.2)

Thus, we need to find the parameter values for which inequality (4.2) is satisfied for at least one real
positive ω of an order higher than µ .

The physical meaning of sufficient instability condition (4.2) is as follows. Let us first consider an
infinitely wide plate and imagine that along it a harmonic wave w(x, t) = ei(kx−ωt) travels at a phase velocity

c = ω/k =
√

M2
w + Dk2 (ω , k ∈ R). It can be shown that the pressure perturbation generated by the gas

flow past the wave is given by

p(x, t) = µ
(ω − Mk)2√

k2 − (ω − Mk)2
ei(kx−ωt) (4.3)

In its turn, the pressure disturbance produces a change in the wave number, which is determined by
formula (4.1). As can be seen from (4.1) and (4.3), the spatial growth or damping of the wave, determined
by the sign of Im l(k), depends on the nature of the gas flow relative to the wave. If the flow is subsonic,
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f (c − M)
f (c + M)

M − 1 cc0

Fig. 2. Graphs of the functions f (c − M) and f (c + M)

that is, |M − c| < 1, then the pressure perturbation is in phase with the plate deflection and does not lead
to wave growth or damping. If, on the other hand, the flow is supersonic, the pressure is shifted in phase
by π/2 relative to the wave, which leads to the appearance of an imaginary part of the wave number k. In
this case, the spatial damping or amplification of the wave depends on the direction of gas flow relative to
the wave and on the direction of motion of the wave itself. If these directions coincide, the work done by
the gas is positive and the wave is amplified; otherwise the work is negative and the wave is damped. Thus,
an upstream-propagating wave always experiences flow resistance and is damped, whereas a downstream-
propagating wave is amplified if the gas moves more rapidly than the wave (M − c > 1) and is damped if
the wave leaves the flow behind (M − c < −1).

Let us now consider a plate of large but finite length. The mechanism of formation of its global eigen-
function constructed according to [12; 13, §65] is as follows. A wave that travels along the plate in the
gas-flow direction is reflected from its rear edge and generates a backward wave. The latter is, in its turn,
reflected from the leading edge and generates a forward wave with generally another amplitude. As a result
of this process of interconversion of the two waves reflected from the plate edges, a global eigenfunction is
formed. If we take the amplitude of the initial wave as unity, the amplitude of the reflected wave will be
equal to A3e−L Imk2 and the amplitude of the doubly reflected wave to A3e−L Imk2A2eL Imk3 . Here, A2 and A3
are the coefficients of reflection from the leading and rear edges of the plate. Then, for large L, the condition
of increase in amplitude on double reflection (i.e., the condition of growth of the global eigenfunction) is
given by the inequality Im(k2 − k3) = Im(l(k2) − l(k3)) < 0, which is equivalent to (4.2).

We will now investigate inequality (4.2). It is satisfied if both the first and second terms are complex,
i.e., the gas flow is supersonic relative to both up- and downstream traveling waves. The signs of the square
roots in (4.2) are determined by the choice of k(ω) branches, which should be so made that at large Imω
these are roots of the dispersion equation (3.1). On the other hand, the above considerations show that for
physical reasons the branches should be chosen as follows: the imaginary part of the first radical in (4.2)
must always be negative and that of the second negative for M − c < −1 and positive for M − c > 1. A
numerical analysis of the behavior of solutions of (3.1) with variation of Im ω completely confirms this
choice. Thus, inequality (4.2) is satisfied only if M − c > 1. In this case, it can be written as follows:

f (c + M) < f (c − M) (4.4)

Here, f (x) = x2/
√

x2 − 1, the square root value being chosen positive. Inequality (4.4) is satisfied for
c0 < c < M − 1, where c0 is the abscissa of the intersection of the graphs (Fig. 2). Thus, the instability

condition holds if c(k) =
√

M2
w + Dk2 < M − 1 for a certain k. Taking into account the fact that k must be

of higher order than µ , we find that the high-frequency perturbations are globally unstable if M > M + 1 +
χ(D, Mw, µ), where χ > 0 is a small correction whose exact value can be found numerically directly from
Eq. (3.1).

FLUID DYNAMICS Vol. 40 No. 5 2005



810 VEDENEEV

Imω
δmax

ωmax Reω

Ω1

Fig. 3. Part of the curve Ω1 calculated for parameters (5.4). The continuous curve k2(ω, µ) is calculated from (3.1) and
the broken curve from (5.3)

5. GROWTH RATE OF HIGH-FREQUENCY PERTURBATIONS

Assuming that the system lies in the region of global instability of high-frequency perturbations obtained
in the previous section, we will find the shape of the curve Ω near which the natural frequencies of the
system are located (Section 2). For ω � µ it is determined by the condition

Imk1 > Imk2 = Imk3 > Imk4 (5.1)

As will be shown in Section 6, in the low-frequency region the curve Ω may be determined by another
expression; therefore, to be specific, we will denote the part given by (5.1) by Ω1. Assuming the frequency
ω to be real and positive, we obtain the following expansion of the wave number in the frequency increment
iδ :

k2(ω + iδ , µ) = k2(ω , µ) + iδ
∂k2(ω , 0)

∂ω

k3(ω + iδ , µ) = k3(ω , µ) + iδ
∂k3(ω , 0)

∂ω

Observing that ∂k2(ω , 0)/∂ω = −∂k3(ω , 0)/∂ω and using (5.1), we find

δ (ω) = −1
2

(
∂k2(ω , 0)

∂ω

)−1

Im(k2(ω , µ) − k3(ω , µ)) (5.2)

Expression (5.2) determines the curve Ω1 consisting of points ω + iδ (ω), where ω ∈ R and ω � µ .
From the results of Section 4 (Fig. 2) it follows that the inequality δ (ω) > 0 can be satisfied only in the

neighborhood of the point ωmax determined by the equality

c(ωmax) = M − 1 ⇒ ωmax = (M − 1)
√

((M − 1)2 − M2
w/D

However, in this neighborhood, for small but finite µ we cannot use the expansion

k2(ω , µ) = k2(ω , 0) + µ l(k2(ω , 0)) (5.3)

where l(k2(ω , 0)) can be found from (4.1), since as c(ω)→ M − 1, l(k2(ω , 0)) →−i∞ and approximation
(5.3) does not hold. Physically, this is a consequence of a “resonance” between the waves propagating
in the plate and in the gas. For fixed parameter values, the curve Ω1 can be plotted and the maximum
growth increment (damping coefficient with the opposite sign) of the high-frequency eigenfunctions δmax =

max
ω ∈R, ω�µ

δ (ω) can be numerically calculated by solving the dispersion equation (3.1) for k and substituting
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δw

δmax

L

Fig. 4. Dependence δw(L) for parameters (5.4)

δmax

M

Fig. 5. Dependence δmax(M) for D = 23.9, µ = 1.2 ·10−4, and Mw = 0, 0.3, 0.6 (curves 1–3)

the values obtained in (5.2). In Fig. 3, as an example, the continuous curve represents part of Ω1 for the
parameters

M = 1.5, Mw = 0, D = 23.9, µ = 1.2 ·10−4 (5.4)

whence we find δmax ≈ 3.6 · 10−4. For comparison, the same curve calculated using expression (5.3) is
shown as a broken line. All the points of the curve Ω1 located outside the region of the ω plane shown
in the picture have negative imaginary parts. For small Mach numbers (M ∼ 1.1) the point of maximum
growth increment is displaced to the right of ωmax although still close to it; in this respect, the notation ωmax

is conventional.
We will now consider the discrete spectrum of the natural frequencies of the system. In the absence of a

gas the natural frequencies ωn lie on the real axis ω and ωn ∼ (n/L)2 as L → ∞. In the presence of a gas, in
the first approximation for large L, the natural frequencies satisfying the condition ω � µ lie on the curve
Ω1 and have the form ωn + iδ (ωn), where δ (ωn) is determined by formula (5.2); with increase in the plate
width L the frequencies move along the curve Ω1 in the direction of decreasing real part. As a result, the
next dependence of the eigenfunction growth increment on the plate width is formed.

For a sufficiently small width L (we assume that the global stability theory is applicable to the L values
considered), ωn � ωmax for any n and the plate position is stable, since δ (ωn) < 0. With increasing L the
first natural frequency ω1 approaches ωmax (Fig. 3), enters the flutter zone (δ (ω1) > 0), passes through
the maximum growth point, and moves away into the stability region again. Then the frequencies ω2, ω3,
etc. follow the same path. Since the distance between adjacent frequencies lying in the neighborhood of
ωmax tends to zero as L → ∞, starting from a certain L the plate always lies in the region of high-frequency
flutter and with increasing L the growth increment δw = max

n:ωn�µ
δ (ωn) maximal among all high-frequency

eigenfunctions displays damped oscillations and asymptotically approaches δmax.
In Fig. 4, for example, the dependence of δw on the width of a hinged plate (ωn = (πn/L) ×√

D(πn/L)2 + M2
w) is shown for the parameter values (5.4). With increase in L each next local δw min-

imum corresponds to the transition of maximum-rate growth to the next mode of natural oscillations.
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Similarly, we can trace the dependence of the natural frequencies ω � µ on the Mach number M. Here
the natural frequencies of the plate oscillation in a vacuum ωn remain stationary, while the curve Ω1 is
displaced to the right and deformed. The dependence δw(M) is also oscillatory, but the maximum growth
increment δmax varies with M (Fig. 5).

The qualitative nature of the dependence δmax(M) (Fig. 5) makes it possible to trace the dependence of
the maximum growth increment on the angle of incidence θ (Fig. 1). For any Mw there exists an M =
Mmax(Mw, D, µ) such that the maximum eigenfunction growth increment δmax is maximal for all M. From
this it follows that for fixed parameters M∗ > Mmax (M∗ = u/a is the Mach number calculated with respect
to the total velocity vector), Mw, D, and µ and for variable incidence angle θ the perturbations independent
of the y coordinate grow most rapidly at θ = arccos(Mmax/M∗).

6. GLOBAL INSTABILITY OF LOW-FREQUENCY PERTURBATIONS

We will now consider the case of low-frequency perturbations when in (3.1) the second term is not small
as compared with the first.

We will first reproduce the results of a numerical investigation of the behavior of k(ω) at small ω for
the parameter values (5.4). For sufficiently large ω , as follows from the previous sections, the curve Ω
is determined by condition (5.1) and consists of points on Ω1. Let us move along Ω1 in the direction of
decreasing Reω . Then (5.1) is satisfied only up to a certain ω determined by the condition Imk1 > Imk2 =
Imk3 = Imk4 and corresponding to the end of the curve Ω1. As Reω increases further the position of
the branches k3 and k4 relative to each other changes and the points of the curve Ω are determined by the
condition

Imk1 > Imk2 = Imk4 > Imk3 (6.1)

We will denote the curve defined by (6.1) by Ω2. Then Ω is the sum of Ω1 and Ω2 and has a break
at their junction point. The physical significance of the change in the relative position of Imk3 and Imk4
consists in the following. In the absence of a gas, at small real ω , the amplitude of the wave corresponding
to the branch k3 is spatially constant while the amplitude corresponding to k4 is slowly damped. Under the
action of the gas, as shown in Section 4, the wave corresponding to k3 is also damped, and since at small
ω the wave and the gas interact strongly, the damping is of the same order as the damping of the wave
corresponding to k4. The replacement of Imk3 > Imk4 by the opposite inequality Imk3 < Imk4 indicates
that at small frequencies, under the action of the gas, the wave k3 is damped more strongly than the wave k4
and the global eigenfunctions correspond to the waves k2 and k4, not k2 and k3.

Let us consider, for the parameter values (5.4), the structure of the level curves of the function Reω(k)
calculated numerically and shown in Fig. 6. In the fourth quadrant of the k plane there is a branch point
k∗ = k2 = k4 = 0.0118 − 0.0068i which corresponds to ω∗ = 0.0013 + 7.72 · 10−4i and is the end of Ω2.
The calculated curve Ω2 and the part of Ω1 that lies in the region of small ω are shown in Fig. 7. For
the parameter values (5.4), since Imω∗ > 0, the low-frequency perturbations are globally unstable and,
since Im ω∗ is more than twice as great as δmax (Fig. 3), the low-frequency flutter is more intense than the
high-frequency one.

Now let the values of the problem parameters be arbitrary. The numerical investigation of the behavior
of k j(ω) shows that the point of branching of k2 and k4 is the only possible point of branching of the roots of
the different groups in the region Imω > 0. If this branch point exists, then the maximum of the imaginary
parts of ω lying on the curve Ω2 is reached at its end, at the branch point. We will investigate its position in
the complex plane ω . Assuming that |k| � |ω |, we simplify the dispersion equation (3.1) by neglecting ω
in the second term and choosing a definite branch of the square root:

Dk4 + M2
wk2 − ω2 + iµ

M2√
M2 − 1

k = 0 (6.2)
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Imk

Rek

Fig. 6. Level lines Reω(k) in the region of small k. The originals of the rays Reω = const > 0 are shown for Imω > 0
by continuous and for Imω < 0 by broken lines. The originals of Reω = 0 are shown by heavy continuous and those of
Imω = 0, Reω > 0 by heavy broken lines. The originals of ω = 0 are shown by dots and the branch points by circles.
The numbers 1–4 denote the branches k j(ω) which map the region Reω > 0, Imω > 0 into the region containing the
corresponding number

The branch points (6.2) are determined by the system

4Dk3 + 2M2
wk + iµ

M2
√

M2 − 1
= 0

2M2
wk2 + 3iµ

M2
√

M2 − 1
k = 4ω2

(6.3)

The first equation in (6.3) was obtained by differentiating (6.2) with respect to k and the second by
subtracting the first equation (6.3) multiplied by k/4 from (6.2).

We will first consider the case Mw = 0. Then one of the solutions of (6.3) takes the form:

k∗ =
(

µ
M2

√
M2 − 1

)1/3

(4D)−1/3e−iπ/6, ω∗ =
√

3
2

(
µ

M2
√

M2 − 1

)2/3

(4D)−1/6eiπ/6 (6.4)

For small µ , values (6.4) satisfy the condition |k| � |ω | and therefore approximately coincide with one
of the branch points of the function k(ω) obtained by multiplying (3.1) by (3.2). For the parameter values
(5.4), expression (6.4) yields the values k∗ = 0.0118 − 0.0068i and ω∗ = 0.0013 + 7.85 · 10−4i which are
close to the required branch point of k2 and k4 (Fig. 6). From this it follows that, firstly, at Mw = 0, (6.4) also
gives the required branch point for other values of the parameters M, D, and µ and, secondly, if the condition
|k| � |ω | is satisfied, then at Mw 	= 0, among all the solutions of (6.3), the approximation to the required
branch point is given by the solution which can be obtained from (6.4) by a continuous transformation with
Mw varying from zero to a fixed value. From (6.4) it can be seen that for Mw = 0 the branch point (k∗, ω∗)
always lies in the region Imω > 0 and thus the low-frequency perturbations are globally unstable. System
(6.3) also admits another solution (k∗∗, ω∗∗) differing from (6.4) in that k is reflected about the imaginary
and ω about the real axis. This branch point is of “mixed” type in the sense that at this point the root k3
merges with the branch formed during the branching of roots k2 and k4 at point (6.4) (Fig. 6). The third
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Imω

Reω

ω∗

Ω2

Ω1

Fig. 7. Curve Ω2 and the part of the curve Ω1 that lies in the region of small ω , calculated for parameters (5.4)

solution of (6.3) gives a branch point of the roots k1 and k2 which belong to the same group; this point is
unrelated to global instability and will not be considered in what follows.

We will study the change in the position of the branch points with increasing Mw. For

Mw <

(√
54
4

)1/3 (
µ

M2
√

M2 − 1

)1/3

D1/6

by applying the argument principle to the first of equations (6.3), it can be shown that at the branch point
k∗(Mw) obtained by continuing (6.4) the inequalities Rek∗ > 0 and Imk∗ < 0 are satisfied and Imk∗(Mw)
monotonously decreases with increase in Mw. For these conditions, from the second equation it follows that
ω2 cannot be real and, hence, Reω∗ > 0 and Imω∗ > 0, that is, the low-frequency perturbations remain
globally unstable. As before, the branch point (k∗∗, ω∗∗) is the mirror reflection of the point (k∗, ω∗) about
the imaginary k and real ω axes.

For

Mw =

(√
54
4

)1/3 (
µ

M2
√

M2 − 1

)1/3

D1/6 (6.5)

the branch points (k∗, ω∗) and (k∗∗, ω∗∗) merge into one triple branch point

k∗ = k∗∗ = − i
2

(
µ

M2
√

M2 − 1

)1/3

D−1/3, ω∗ = ω∗∗ = −
√

3
4

(
µ

M2
√

M2 − 1

)2/3

D−1/6

at which the roots k2, k3, and k4 coincide. Value (6.5) lies on the boundary of the global instability region,
since the merging takes place on the real axis ω .

With further increase in Mw the merged branch points separate, moving along the imaginary axis in the
k plane and along the real axis in the ω plane, that is, perpendicular to their previous trajectories. The roles
of these points change. At the first branch point, which moves in the direction of decreasing Imk, the roots
k3 and k4 merge, which can be established by numerically constructing for any problem parameters level
curves similar to those in Fig. 6. Since the roots belong to the same group, this point is unrelated to global
instability. The second point moves in the direction of increasing Im k and decreasing Reω and is a branch
point of the roots k2 and k3. For sufficiently large Mw the condition |k| � |ω | is not satisfied and (6.2) poorly
approximates the dispersion equation (3.1). However, a numerical investigation shows that the branch point
of the roots k2 and k3 calculated from (3.1) is displaced from the real axis ω into the lower half-plane and
does not lead to instability. This point is the end of the curve Ω1 which thus can depart into the upper ω half-
plane only in the region of high-frequency perturbations. Since in this case the curve Ω2 does not contain
any points, if Mw exceeds the value (6.5), then the low-frequency perturbations are not globally unstable.
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7. DISCUSSION OF THE RESULTS

We will first make an observation concerning the applicability of approximate hydrodynamic theories
to plate flutter problems. In fact, in our study, for finding the pressure acting on an oscillating plate the
following method was used: the oscillation was represented as a superposition of traveling waves and the
pressure was assumed to be a superposition of pressures (4.3) acting on these waves. By using the exact
deflection dependence of the pressure [1, 3, 6], it can be shown that for Im ω > 0, as L → ∞, this method is
asymptotically exact. Let us assume that, instead of the exact expression (4.3), for the pressures acting on
the traveling waves the following dependence of the pressure on the plate deflection is used:

p(x, t) = C1
∂ω
∂x

+ C2
∂ω
∂ t

(7.1)

where Cj are functions of the problem parameters and C2 ≥ 0. In particular, a dependence of this form
is given by the piston theory and by some other approximations of the exact dependence for large Mach
numbers. Then the analog of inequality (4.2) takes the form Im(i(C1k + C2ω) + i (−C1k + C2ω)) < 0
and the entire curve Ω1 lies in the region Im ω ≤ 0. Thus, the high-frequency flutter cannot be obtained
using (7.1); this seems to be the main disadvantage of such dependences. We note that the theory developed
in [10] correctly describes the high-frequency flutter and gives a criterion identical to that obtained in this
study.

The low-frequency flutter is correctly described by dependences of the form (7.1), since it was investi-
gated using for the dispersion equation approximation (6.2), which can be treated as the exact dispersion
equation obtained using a quasi-static approximation of form (7.1), where C1 = µM2/

√
M2 − 1 and C2 = 0.

We will now explain the difference between high- and low-frequency flutter. In [5, 16], two types of
plate flutter are described. The first, with a single degree of freedom, arises as a result of one of the nat-
ural frequencies entering the region Im ω > 0 under the action of negative aerodynamic damping of the
corresponding plate oscillation mode. In this case, there is no interaction between the oscillation modes.
The other type is coupled flutter, which is a result of the interaction between two oscillation modes. Let us
consider the destabilization mechanism for this flutter type [2, 3, 9]. For a sufficiently small Mach number
or plate width, all the natural frequencies have the same negative imaginary part. With increase in M or L
the first and second natural frequencies move toward each other and their trajectories are parallel to the real
axis ω . At a certain moment they meet and then drift apart in directions perpendicular to the initial ones:
one frequency moves in the direction of decreasing and the other of increasing imaginary part. As the latter
intersects the real axis, destabilization occurs.

We will prove that the high- and low-frequency flutters obtained in this study are flutter with a single
degree of freedom and coupled flutter, respectively. We will first consider the high-frequency flutter. It
is easy to see that the structure of the increasing high-frequency eigenfunction described in Section 4 is
identical to the structure of the eigenfunctions for a plate in a vacuum. The difference lies in the fact that
after two reflections in a vacuum the wave amplitude coincides with the initial amplitude, whereas in a gas
it increases, which results in the growth of the eigenfunction with time. Thus, the high-frequency flutter
oscillations arise due to negative aerodynamic damping of one or more oscillation modes and occur without
any intermodal interaction.

From the results obtained in [2, 3, 9] within the framework of piston theory it follows that a plate in the
form of a sufficiently wide strip lies in the region of coupled flutter. Since high-frequency flutter cannot
be obtained in the piston theory approximation, the coupled flutter is a low-frequency flutter. Moreover,
using the results obtained in [2], it can be shown that the trajectories along which the frequencies of the
time-increasing eigenfunctions move with increase in L are qualitatively similar to the curve Ω2 (Fig. 7).
Hence, the concepts of low-frequency and coupled flutter coincide.

This correspondence between flutter types explains why flutter with a single degree of freedom was never
described by Soviet and Russian authors. The vast majority of studies used relations of (7.1) type, which,
as shown above, do not describe flutter with a single degree of freedom. On the other hand, in the studies
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that used more correct expressions for the dependence of the pressure on the deflection, in the numerical
solution, the number of series terms retained was insufficient to obtain high-frequency flutter. We note that
in handbooks on aircraft design [17–19] the panel flutter criterion is obtained using quasi-static and piston
theory and therefore flutter with a single degree of freedom is not excluded.

Summary. The global instability of a wide elastic strip in a gas flow is studied. It is shown that there are
two types of instability corresponding to the instability of high- and low-frequency perturbations, respec-
tively. Both are oscillatory and thus of flutter type.

The high-frequency flutter criterion and the frequency at which the eigenfunctions increase most in-
tensely have the approximate form:

M > Mw + 1, ω = (M − 1)
√

((M − 1)2 − M2
w)/D

The high-frequency flutter is a consequence of negative aerodynamic damping of the natural oscillations
of the plate. The mechanism of formation of increasing eigenfunctions consists of the cyclic reflections and
interconversions of two waves traveling in opposite directions, during which their amplitudes increase.

The structure of the system’s high-frequency oscillation spectrum is described. With increase in the plate
width L, the L dependence of the increment of the most rapidly increasing high-frequency eigenfunction is
oscillatory in nature. As L → ∞, the oscillations are damped, approaching the maximum possible increment,
and the number of the most rapidly growing eigenfunction increases monotonically. The dependence of the
growth increment of the most rapidly increasing high-frequency eigenfunction on the Mach number M is
found.

The low-frequency flutter criterion and frequency have approximately the form:

Mw <

(√
54
4

)1/3 (
µ

M2
√

M2 − 1

)1/3

D1/6, ω = A

(
µ

M2
√

M2 − 1

)2/3

D−1/6

where A depends on the parameters of the problem and varies from 0.433 on the boundary of the flutter
region up to 0.595 at Mw = 0. Low-frequency flutter arises as a result of the interaction of oscillation
modes. It can be adequately described using the quasi-static dependence of the gas pressure on the plate
deflection, whereas the high-frequency flutter cannot be obtained either by means of quasi-static and piston
theory or by using any approximation of the form (7.1).
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