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1 INTRODUCTION 
Recently a linear stability of an elastic plate in a supersonic gas flow was investigated using exact 
aerodynamic theory [1, 2]. Two types of instability were obtained. The first one is coupled-type 
instability: it happens due to interaction of two eigenmodes. This type is well described by the piston 
theory and analysed in linear and non-linear statements in detail [3, 4]. Another instability type is a 
single-degree-of-freedom instability. It was discovered for the first time in [1, 2] and was called “high-
frequency flutter”. Its main feature is that it cannot be detected using the piston theory. Simple 
physical mechanism of temporal eigenmodes amplification was discovered, and the criterion of linear 
stability was obtained. The aim of the present paper is to analyse high-frequency panel flutter in non-
linear statement and to assess amplitudes of limit cycle oscillations. 

2 STATEMENT OF THE PROBLEM 
Von Karman’s equation of non-linear plate motion in a gas flow in dimensionless variables has the 
following form (for simplicity, we consider two-dimensional problem): 
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Here D, 2
wM , K and L are dimensionless bending stiffness, static tension of the plate, non-linearity 

parameter and the plate length (the following dimensional parameters are used for non-
dimensionalization: the plate thickness, the plate material density and the gas speed of sound). P{w} is 
a pressure disturbance acting on the plate. If the plate oscillation is harmonic, then the exact theory of 
potential flow gives: 
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Here M is Mach number, µ  is a ratio of the gas density to the plate material density. The same way as 
in [1, 2] we will assume that µ  is a small parameter (in reality 410~ −µ ). In case of non-harmonic 
oscillation one should express a deflection w as Fourier series or integral and use linearity of P{w}.  

Let us assume that only the first mode ( tiexWtxw 1)(),( 1
ω−= ) is linearly unstable ( 0Im 1 >ω ). Then 

near the instability boundary a non-linear deflection has the form ≈),( txw )()( 11 tAxW . Using the 
procedure of Bubnov-Galerkin, we obtain the amplitude equation: 



Vasily V. Vedeneev 

0}{ 1
3
1

2
111

2
012

1
2

=−+ω+
∂
∂ APAKaA

t
A .    (2) 

Here 01ω  is the first plate eigenfrequency in vacuum. Expressions for 11a , }{ 1AP  and the eigenform 
normalization condition are as follows: 
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3 CALCULATION OF THE PRESSURE 
As it is difficult to use (1) directly, we use the method based on the fact that we know eigenfrequency 
of the linearly unstable mode [1]. For harmonic oscillation ( tiCetA ω−=)(1 ) from (1) we have:  
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where )(1 ωp  and )(2 ωp  are some functions of ω  and of the problem parameters. If 01ω=ω , then 
substituting (4) into linearized equation (2), it is easy to see that 1012 Im)( ω=ωp . If 01ω≠ω , we find 
such D’ and 2'wM  that ω=ω )','( 2

01 wMD  and 22 /'/' ww MMDD = . Then we have: =ω)(2p  
))','(( 2

012 wMDp ω ))','(Im( 2
1 wMDω= .  

Finally, after calculations we obtain the dependence )(2 ωp  shown in the figure 1. The frequencies 
'ω , ''ω  are functions of the problem parameters, and in particular of Mach number. Further we will 

need an expression for 'ω ; for example if the plate is simply supported and 0=wM , then  
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Figure 1. The function )(2 ωp  in the high-frequency region.  

In the region )(')('' MM ω<ω<ω  the aerodynamic damping ( )(2 ω− p ) is negative; this is the 
reason of existence of a single-degree-of-freedom flutter. As )(' Mω  and )('' Mω  are growing 
functions of M, the first mode is unstable for *** MMM << , where 01

* )(' ω=ω M and 
01

** )('' ω=ω M . Obviously, *MM =  is a critical Mach number. 
The method described above gives us the function )(2 ωp , but says nothing about )(1 ωp . On the 

other hand, as the high-frequency flutter mechanism is connected only with negative aerodynamic 
damping, and 2

011 ~)( ω<<µωp , then we may put 0)(1 =ωp  with high accuracy.  

4 LIMIT CYCLE ANALYSIS 
Let us now return to the non-linear equation (2) where the expression (4) is used: 
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As limit cycles are periodic solutions, we can search for them in the form 
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Assume that the oscillation is close to harmonic: njCC >> .  Using the harmonic balance method, we 
obtain a first-order solution: 
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0)(12 =ωp    ⇒    'ω=ω , ''ω=ω  

4.1 Oscillations in the instability region 
If the first eigenmode is linearly unstable ( *** MMM << ), then ''' 01 ω≤ω≤ω , and the only limit 
cycle with 'ω=ω  exists.  

In order to study transitional solutions consider an energy equation: multiply (6) by tA ∂∂ /1  and 
transform to 
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The left side of (8) is a change of the full oscillation energy. If 0)(2 >ωp , then the energy increases, if 
0)(2 <ωp , then it decreases, and only in case of 0)(2 =ωp  the oscillation is neutral.  

Consider a physical behavior of the plate. Imagine that a small disturbance (the lowest plate 
eigenmode) is generated. Linear instability leads to a temporal amplitude growth. Due to non-linear 
term in (6) the amplitude and the frequency are connected with each other, and the frequency starts to 
grow too. As free non-linear plate oscillation can have arbitrary amplitude, then non-linearity itself 
cannot stop the amplitude growth. As a result, growth of the amplitude and the frequency takes place 
while 0)(2 >ωp . When ω  reaches 'ω , )(2 ωp  becomes equal to zero, and amplification changes into 
neutral oscillation. 

It is easy to see from (8) and figure 1 that the limit cycle with 'ω=ω  is stable. Indeed, increase 
(decrease) of the amplitude leads to increase (decrease) of the frequency and to a reverse effect from 
the pressure: decrease (increase) of the energy and following decrease (increase) of the amplitude. 

We note that the amplitudes (7) are the same as for free non-linear oscillation of the plate in 
vacuum. The difference is that in vacuum an oscillation can occur at any frequency (and amplitude), 
while in a gas flow the frequency is defined by the condition 'ω=ω . 

4.2 Leaving the instability region 
When **MM > , the first eigenmode leaves the instability region: ''01 ω≤ω . At the same time the 
limit cycle oscillation continuously goes on because this cycle is stable. Two stable solutions (rest and 
the limit cycle oscillation) are separated by the second limit cycle with ''ω=ω , this cycle arises if 

''01 ω≤ω . It is easy to see from (6) that the second limit cycle is unstable: for arbitrary small decrease 
of the amplitude the oscillation damps to zero, for arbitrary small increase of the amplitude the 
oscillation builds up to the first limit cycle with 'ω=ω . 

Thus we obtain a qualitative structure of the plate attractors shown in the figure 2, a. 

5 EXEMPLARY CALCULATIONS 
All plates considered are simply supported, have rigid edges and have no static tension ( 0=wM ). As 
for *MM =   '01 ω=ω , then from (5) )/)(1( *

01 LM π−=ω . Using this equality and (5), we can 
rewrite (7) as follows: 
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Figure 2. Transitional behavior of a plate in a gas flow (a), amplitudes of the plate deflection divided 

to its thickness (b). Figure a: solid line is the stable limit cycle, dashed line is the unstable one.   
Figure b: solid lines are C(M), dashed lines are C31(M); only stable limit cycles are shown.  

Due to normalization (3) )/cos(/2)(1 LxLxW π= , therefore in order to obtain “physical” 
amplitudes (divided to the plate thickness) we should multiply (9) by L/2 . Calculations are 
performed for steel plates in an air with normal conditions ( 8.19=D , 237=K , 4102.1 −⋅=µ ). 
Amplitudes (9) multiplied by L/2  for L=50, 100, 300 are shown in the figure 2, b. We can see that 

31CC >> , and the assumption made above is correct. 

6 CONCLUSIONS 
Non-linear analysis of a plate motion in a supersonic gas flow is performed in case of high-frequency 
flutter. The pressure acting on the plate is calculated with use of results of a linear stability analysis [1, 
2] based on the exact theory of potential flow.  

The dependence of limit cycle amplitude on the problem parameters is obtained analytically. It is 
shown that oscillation in a gas flow is the same as in vacuum, but in vacuum the frequency (and 
consequently the amplitude) is arbitrary, while in a gas the frequency of limit cycle oscillation is 
defined by the condition )(' Mω=ω . Exemplary calculations are performed. 
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