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Abstract—In recent studies of the problem of linear stability of a plate in a supersonic gas flow a
new (“high-frequency”) type of flutter, which cannot be obtained by means of the piston theory usually
employed in these problems, was found to exist together with the classical (“low-frequency”) type. In
the present study a new method of calculating the pressure acting on a high-frequency vibrating plate is
proposed and, using this method, high-frequency flutter is investigated in the nonlinear formulation and
the flutter vibration amplitudes are determined.
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1. FORMULATION OF THE PROBLEM

We will consider an elastic, isotropically stretched plate exposed on the side to a plane-parallel supersonic
inviscid perfect gas flow, while on the other side a constant pressure, which balances the plate, is maintained.
The plate is embedded in an absolutely rigid plane separating the gas flow from the constant pressure zone.
The problem of the stability of this system was studied in [1–3]. In addition to the classical well-investigated
(“low-frequency”) type of flutter observed when investigating the problem by means of the piston theory, a
new (“high-frequency”) type of flutter, which cannot be obtained by means of the piston theory, was found.
The present study is devoted to the investigation of high-frequency flutter in the nonlinear formulation and
the determination of the flutter vibration amplitudes.

We will assume that the nonlinearity of the problem is due to the geometric nonlinearity of the behavior
of the plate, namely, the presence of the membrane stresses developing during bending (Kármán large
deflection model). The gas pressure perturbation acting on the plate will be assumed to be linearly dependent
on the deflection since the aerodynamic nonlinearity significantly affects the plate vibrations only at very
high Mach numbers (of the order of 20) [4, §4.18]. Initially, we will consider the problem in the two-
dimensional formulation, the question of the extension of the results to rectangular plates being considered
latter. The dimensionless equation of motion of the plate has the form [5, §24]:
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Here, w(x, t) is the deflection of the plate divided by its thickness, E , ν , and ρm are Young’s modulus,
Poisson’s ratio, and the density of the plate material, Lw and h are the plate width and thickness, and u, ρ , and
a are the velocity, the density, and the sonic speed of the gas. The plate tension (the coefficient of ∂ 2w/∂x2)
consists of from two parts: a constant tension applied to the plate (the first term, σ is the tensile stress) and an
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Fig. 1. Part of the curve Ω corresponding to high-frequency flutter. The characteristic scale along the vertical axis is 100
times less than the horizontal scale.

additional nonlinear tension appearing in the deflection of the plate (the second term). The parameters D and
L are the dimensionless stiffness and width of the plate, Mw and K characterize its tension and nonlinearity,
and M and µ are the Mach number and the dimensionless density of the gas. The expression for K is written
on the assumption that the plate edges are not displaced during bending, otherwise K is less than this value.

The operator P{w(x, t)} is the gas pressure perturbation; in the case of harmonic oscillations it has the
form [4, §4.7]:

P{W (x)cos ωt} = −Re
µ√

M2 − 1
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)
dξ . (1.2)

For calculating P{w} in the case of nonharmonic oscillations it is necessary to represent the deflection
in the form of a Fourier series or integral and to use the linearity of the operator P.

The plate occupies the domain −L/2 ≤ x ≤ L/2 and restraint or hinged conditions must be specified at
the edges. We will give the characteristic values of the parameters for a steel plate exposed to an air flow
under normal conditions (E = 2×1011 N/m2, ν = 0.3, a = 330 m/s, ρ = 1 kg/m3, and ρm = 8500 kg/m3).
In order to determine the maximum possible Mw we take σ = σB = 2×109 N/m2, i.e. the ultimate strength
of steel and then obtain

D = 19.8, Mw = 1.5, K = 237, µ = 1.2×10−4. (1.3)

In what follows, we will assume that the condition M > Mw + 1, which is necessary for the development
of high-frequency flutter, is satisfied [1] and the quantity µ will be assumed to be a small parameter.

2. RESULTS OF THE LINEAR STABILITY INVESTIGATION

We will formulate the method of calculating the eigenfrequencies of the linearized problem (1.1) [1, 2].
We will consider the complex plane of the eigenfrequencies ω (the oscillations are assumed to be time-
dependent as e−iωt). In it we will plot the eigenfrequencies ω0n of the plate in a vacuum; all the eigenfre-
quencies lie on the real number axis. In this plane we will consider the curve Ω, the asymptotic location of
the plate spectrum in the gas flow at large L [1], shown in Fig. 1. At points ω∗, ω∗∗ it intersects the real
axis and lies in the upper half-plane on the interval ω∗∗ < Reω < ω∗ and in the lower half-plane outside it.
When

Rew = ωmax = (M − 1)
√

((M − 1)2 − M2
w)/D, (2.1)

the imaginary part of the points lying on Ω reaches a maximum:
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The distance |ω∗ − ωmax| ∼ µ2/3; therefore, ω∗ ≈ ωmax. The value of
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√
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√

4M2 + 1)(M2 + 1 −
√

4M2 + 1 − M2
w)/D,

is real when M >
√√

(4M2
w + 1) + M2

w + 1; otherwise, on the entire interval 0 < Reω < ω∗ the curve Ω
lies in the upper half-plane.

By carrying out these constructions, we can approximately determine the eigenfrequencies ωn of the
plate-gas system as follows: they lie on the curve Ω and their real parts are equal to ω0n. As an example,
in Fig. 1 we have reproduced the location of the first two eigenfrequencies. We note that the location of Ω
depends only on the parameters M, Mw, D, and µ and is independent of the plate width L and the boundary
conditions specified on the plate edges.

Let the Mach number be fairly small (not greater than Mw + 1) so that in a vacuum all the plate frequen-
cies ω0n > ω∗. In this case the system is linearly stable since Imωn < 0. As the Mach number M increases,
the curve Ω is displaced to the right; the equality ω01 = ω∗ becomes valid when M = M∗. This Mach
number lies on the boundary of the stability domain. With further increase in M the lowest oscillation mode
starts to grow (Imω1 > 0), i.e., high-frequency flutter develops, continuing while ω∗∗ < ω01 < ω∗. The
equality ω01 = ω∗∗ becomes valid when M = M∗∗ and the first oscillation mode again starts to be damped
when M > M∗∗. Analogously, we can trace the behavior of the second and subsequent modes for which
high-frequency flutter develops if their frequencies lie on the interval ω∗∗ < ω0n < ω∗.

With further increase in M this method of calculating the eigenfrequencies ceases to be valid for modes
that have passed through the high-frequency instability domain (ω0n �ω∗∗). The action of the flow on these
modes becomes significant and Reωn �= ω0n; then the eigenfrequencies can interact and depart to the upper
half-plane. In this case low-frequency flutter develops, i.e., instability of the type which can be observed in
investigating the problem by means of the piston theory [1]. In the present study low-frequency flutter is
not considered and it is always assumed that the Mach number is not too high, so that only high-frequency
flutter can develop.

3. DERIVATION OF AN EQUATION FOR THE AMPLITUDE

Let there be some solution of Eq. (1.1). We will expand it in terms of the natural modes of plate oscillation
in a vacuum:

w(x, t) =
∞

∑
j=1

Wj(x)A j(t), (3.1)

with as yet unknown amplitudes A j(t). This expansion exists and is unique by virtue of the completeness of
the plate eigenfunctions.

We will substitute this expansion in (1.1) and use the Bubnov–Galerkin method multiplying (1.1) by
Wn(x) and integrating with respect to x from −L/2 to L/2. By virtue of the orthonormality of the eigenfre-
quencies the following equalities hold:

L/2∫

−L/2

(
D

∂ 4Wj

∂x4 − M2
w

∂ 2Wj

∂x2

)
Wndx = ω2

0nδ n
j ,

L/2∫

−L/2

WjWn dx = δ n
j .
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Here, δ n
j is the Kronecker delta. Setting

ajn =
1√
2L

L/2∫

−L/2

∂Wj

∂x
∂Wn

∂x
dx = − 1√

2L

L/2∫

−L/2

∂ 2Wj

∂x2 Wn dx,

Pjn(t) =

L/2∫

−L/2

P{WjA j}Wn dx,

we obtain the following equation for the nth amplitude

∂ 2An

∂ t2 + ω2
0nAn + K

∞

∑
m,k, j=1

amka jnAm Ak A j −
∞

∑
j=1

Pjn = 0. (3.2)

Equations (3.2) are an infinite system of equations for the amplitudes An, n = 1, 2, . . . . In this case
ajn = an j, aj j > 0, and in the particular case of a hinged support on both edges ajn = 0 when j �= n.

As will be shown below, the nonlinear oscillations are similar to harmonic ones; therefore, in order to
calculate the pressure we can use formula (1.2). However, in view of the complexity of its direct use we will
employ the following approximate method for calculating the pressure.

Initially, we will consider the linearized equations (3.2)

∂ 2An

∂ t2 + ω2
0nAn −

∞

∑
j=1

Pjn = 0. (3.3)

From the results of linear stability investigations it is known that in the case of high-frequency flutter or
stability the natural oscillation modes of a plate in a flow are close to the natural modes of the plate in a
vacuum. In other words, by considering the solution of the system of equations (3.3) in the form:

A j(t) = Cje
−iωt , j = 1, 2, . . . (3.4)

we can obtain a denumerable set of values of ωn such that |ωn − ω0n| ∼ µ � 1, |Cj|/|Cn| ∼ µ � 1, j �= n.
From the last estimate it follows that |Pjn|/|Pnn| ∼ µ � 1, j �= n and we can replace the series in (3.3) by the
term Pnn.

We will study the structure of the quantity Pnn. From (1.2) it can be seen that for harmonic oscillations
(An(t) = e−iωt) we can write Pnn(t) = pn1e−iωt + 2pn2e−iωt(−iω), where pn1 and pn2 are functions of ω .
Expressing Pnn in terms of An, we obtain a more convenient formula which can be used in the nonlinear case

Pnn(t) = pn1(ω)An(t) + 2pn2(ω)
∂An(t)

∂ t
. (3.5)

We then substitute expression (3.4) in (3.3), retaining only the basic, nth harmonic, and use (3.5)

−ω2
n + 2iωn pn2(ωn) + ω2

0n − pn1(ωn) = 0,

ωn =
√

ω2
0n − pn1(ωn) − p2

n2(ωn) + ipn2(ωn) =
√

ω2
0n − pn1(ω0n) − p2

n2(ω0n) + ipn2(ω0n).

The last equality is valid correct to small values of the order of µ . Since pn j ∼ µ � 1, the quantity pn2 is
the imaginary part of the eigenfrequency, i.e., the oscillation amplification index, and pn1 corresponds only
to the small variation of the real part of the eigenfrequency under the action of the gas.

Denoting δ ≡ Imω and ω ≡ Reω , we represent the curve Ω (Fig. 1) as the graph of the dependence
δ (M, Mw, D, µ , ω) for given M, Mw, D, and µ . Above we have shown that pn2(ω0n)= δ (M, Mw, D, µ , ω0n).
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Fig. 2. Construction of the dependence pn2(ω): curve (1) corresponds to Ω, curves (2–5) to the same curve displaced to
the left with increase in ω , and curve (6) to the resultant dependence pn2(ω).

Now let the nth oscillation mode occur at a frequency ω which is different from ω0n. From the standpoint
of the gas it is of no importance why the frequency changes—due to nonlinearity or, for example, due to a
proportional change in the plate stiffness or tension since the shape of the oscillation Wn(x) is independent
of both. Therefore, finding a fictitious value of the stiffness D′(ω) that

ω0n(D
′, M′

w(D′), L) = ω , M′2
w (D′(ω)) = M2

wD′(ω)/D, (3.6)

we obtain pn2(ω) = δ (M, MwD′(ω), D′(ω), µ , ω).
We will study the behavior of pn2(ω). When ω = ω0n we can directly determine the quantity pn2(ω0n) =

δ (M, Mw, D, µ , ω0n) from Fig. 1. We will increase ω . Then in solution (3.6) D′(ω) also increases. In
its turn, as the stiffness increases, the curve Ω is displaced to the left since ωmax (2.1) decreases and, as a
result, pn2(ω) can be determined from the displaced Ω. Similarly, as the frequency decreases, pn2(ω) can
be determined from the curve Ω displaced to the right. As a result, we obtain the dependence pn2(ω) shown
in Fig. 2. In fact, it represents the curve Ω compressed about the vertical straight line ω = ω0n.

This method does not make it possible to find the quantity pn1(ω), but since in the high-frequency
domain it is of the order of µ and only slightly affects the oscillations, in what follows we will assume that
pn1(ω) ≡ 0.

4. BEHAVIOR OF MODES DAMPED IN THE LINEAR APPROXIMATION

Let only the first mode grow in the linear approximation and the remaining modes be damped. We
will show that in the nonlinear case we can assume that their amplitudes are small as compared with the
amplitude of the first mode. We group the terms with different powers of An in (3.2) and take (3.5) into
account

∂ 2An

∂ t2 − 2pn2(ω)
∂An

∂ t
+

(
ω2

0n + K
∞

∑
m, k=1
m, k �=n

(amkann + 2amnakn)AmAk

)
An

+ 3K

( ∞

∑
m=1
m �=n

amnannAn

)
A2

n + Ka2
nnA3

n + K
∞

∑
m, k, j=1
m, k, j �=n

amka jnAmAkA j = 0. (4.1)

The dependence pn2(ω) should be interpreted as the dependence on the characteristic oscillation fre-
quency.

We will assume that the initial perturbation is small and all the nonlinear terms are also small. Then the
square of the characteristic frequency ω is the multiplier of An. Since
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∞

∑
m, k=1
m, k �=n

(amkann + 2amnakn)AmAk =
ann√

2L

L/2∫

−L/2

( ∞

∑
j=1
j �=n

∂Wj(x)
∂x

A j(t)
)2

dx

+
1
L

( ∞

∑
j=1
j �=n

L/2∫

−L/2

∂Wj(x)
∂x

∂Wn(x)
∂x

A j(t)dx

)2

> 0,

we have ω > ω0n. Since the nth mode is linearly stable, ω > ω0n > ω∗ and pn2(ω) < 0. Then the term
with the first derivative in (4.1) can be interpreted as the action of the artificial internal viscosity in the plate
material.

In what follows, we will show that under the action of the gas flow the first oscillation mode is similar to a
harmonic oscillation. But from the standpoint of Eqs. (4.1), for the higher modes it is of no importance what
is the reason for these oscillations; for example, we may assume that forced oscillations at a given frequency
take place in relation to the first mode. Thus, the question of the behavior of the higher modes reduces to
the problem of the natural nonlinear oscillations of the plate. This problem has been investigated in detail in
the plane [6] and three-dimensional formulations [7], where for the characteristic values of the parameters
it was shown that the nonlinear oscillation modes are close to linear for amplitudes not higher than 1.5h. In
terms of Eqs. (4.1) this means that the solutions |An(t)| � |A1(t)|. For amplitudes much higher than that
mentioned above internal parametric resonance may develop and the oscillation modes may change.

5. BEHAVIOR OF THE MODE GROWING IN THE LINEAR APPROXIMATION

Assuming that |An| � |A1|, n > 1, in the equation for A1 we can omit all the terms containing amplitudes
with an index greater than one. Then we can write Eq. (4.1) in the form:

∂ 2A1

∂ t2 − 2p12(ω)
∂A1

∂ t
+ ω2

01A1 + Ka2
11A3

1 = 0. (5.1)

We will find the limit cycles of this equation. Since they are periodic solutions, they can be found in the
form:

A1(t) = C cosωt +
∞

∑
n=2

(Cn1 cosnωt + Cn2 sinnωt). (5.2)

We will assume that the oscillation is close to harmonic, i.e. |C| 
 |Cng|. After substituting in (5.1) and
retaining only the terms linear in Cng, we obtain

−ω2C cosωt −
∞

∑
n=2

n2ω2(Cn1 cosnωt + Cn2 sin nωt) + 2p12(ω)ωC sin ωt + ω2
01C cos ωt

+ ω2
01

∞

∑
n=2

(Cn1 cosnωt + Cn2 sinnωt) − p11(ω)C cos ωt + Ka2
11C3

(
3cos ωt

4
+

cos3ωt
4

)
= 0.

Equating the coefficients of sines and cosines, we obtain the solution in the first approximation

A1(t) = C cosωt + C31 cos3ωt,

C =

√
4(ω2 − ω2

01)
3Ka2

11

, C31 =
Ka2

11

4(9ω2 − ω2
01)

C3,

p12(ω) = 0 =⇒ ω = ω ′, ω = ω ′′.

(5.3)

Here, ω ′ and ω ′′ (Fig. 2) are, respectively, the solutions of the equations
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ω = ω∗(D′(ω)), ω = ω∗∗(D′(ω)), (5.4)

where D′(ω) is the fictitious stiffness (3.6).
Since when the first mode is growing in the first approximation we have ω ′′ < ω01 < ω ′, from (5.3) we

find that oscillations at the frequency ω ′′ are impossible and there is only a single limit cycle having the
frequency ω ′.

We will consider the physical meaning of the results obtained. Let us imagine that a small initial pertur-
bation is excited in the plate in accordance with the lowest oscillation mode. The corresponding eigenfre-
quency lies on the curve Ω on the interval ω∗∗ < Reω < ω∗. In the linear approximation the instability of
the perturbation leads to an increase in its amplitude. However, owing to the nonlinear term in (5.1) the am-
plitude and the frequency are interrelated and the frequency begins to increase, following the amplitude. The
increase in frequency signifies motion to the right along the curve pn2(ω) (Fig. 2). Since without allowance
for the action of the gas the solutions of Eq. (5.1) take the form of neutral oscillations with an arbitrary
amplitude, the nonlinearity cannot itself lead to cessation of the increase in amplitude. As a result, as long
as pn2(ω) > 0 the increase in amplitude, and, consequently, frequency will continue. When the frequency ω
reaches ω ′, the quantity pn2(ω) becomes equal to zero and amplification gives place to neutral oscillations.
In this case no internal resonance takes place since ω ′ < ω∗ < ω0n, n > 1.

These considerations can be confirmed by energy estimates. We multiply (5.1) by ∂A1/∂ t and reduce it
to the form:

1
2

∂
∂ t

((
∂A1

∂ t

)2

+ ω2
01A2

1 + Ka2
11

A4
1

2

)
= 2p12(ω)

(
∂A1

∂ t

)2

. (5.5)

The lefthand side of this equality represents the variation of the total oscillation energy. When pn2(ω) > 0
it increases; when pn2(ω) < 0 it decreases and only when pn2(ω) = 0 are the oscillations neutral. From
Eq. (5.5) it directly follows that the limit cycle at the frequency ω ′ obtained is stable since an increase
(decrease) in amplitude leads to an increase (decrease) in frequency and to the opposite pressure effect, i.e.,
a decrease (increase) in energy and amplitude.

We will find the limits of applicability of formulas (5.3). For this purpose we will calculate the amplitudes
C and C31 in explicit form. For simplicity, we will consider the case of hinged support on both edges and
the absence of tension (Mw = 0). We then have

ω01 =
√

D

(
π
L

)2

=⇒ D′(ω) = ω2
(

L
π

)4

.

Since
ω∗(D) ≈ ωmax = (M − 1)2/

√
D,

solving the equation ω = ω∗(D′(ω)), we finally obtain the oscillation frequency of the limit cycle: ω ′ =
(M − 1)(π/L). Since at the Mach number M∗ the system is on the stability limit and ω01 = ω∗ = ω ′, we
have ω01 = (M∗ − 1)(π/L). Then from (5.3) we obtain

C =
2π

√
M + M∗ − 2√

3Ka2
11L

√
M − M∗, a11 =

π2
√

2L5/2
,

C31 =
2π(M + M∗ − 2)3/2√

27Ka2
11L(9(M − 1)2 − (M∗ − 1)2)

(M − M∗)3/2.

(5.6)

By virtue of the condition of normalization of the natural modes W1(x) =
√

2/Lcos(πx/L); therefore, in
order to obtain the “physical” amplitude (divided by the thickness) the quantities (5.6) must be multiplied by√

2/L. In Fig. 3 we have plotted graphs of these dependences for parameters (1.3) and various L. Clearly,
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the condition C31 � C is satisfied over the entire range of Mach numbers of practical interest, i.e., the
oscillations are close to harmonic.

We note that the frequency dependence of amplitudes (5.3) is the same as for the nonlinear plate oscilla-
tions in a vacuum. The difference resides in the fact that in a vacuum the oscillations may takes place at an
arbitrary frequency (and amplitude), while in the flow the frequency is determined by the condition ω = ω ′.

6. BEHAVIOR OF THE PLATE AS M INCREASES

Formulas (5.3) and (5.4) show that the oscillation amplitudes increase monotonically with the Mach
number M. When M reaches the value M∗∗, the frequency ω01 becomes equal to ω∗∗ and then leaves the
instability domain: ω01 < ω∗∗. At the same time, the oscillations described by the limit cycle obtained in the
previous section go on will continuously since the cycle is stable. The two stable solutions, namely, the limit
cycle and the undisturbed state, are separated by the unstable limit cycle at the frequency ω ′′ while appears
when M > M∗∗. Its instability can be seen from (5.5): the oscillation is damped for an arbitrarily small
decrease in amplitude and develops to the limit cycle at the frequency ω ′ for an arbitrarily small increase.

Thus, we obtain the pattern of the solution attraction domains shown in Fig. 4. This pattern makes
it possible to draw a conclusion about the type of excitation of flutter vibrations. As the Mach number
increases from 1 to M∗ and beyond, flutter is excited softly: the amplitude of the limit cycle is equal to zero
when M = M∗∗ and gradually increases with M. This is shown, in particular, by formulas (5.6). We increase
the Mach number to M > M∗∗ and suppress the oscillations, bringing the plate into the stable equilibrium
state. Now, we begin to decrease the Mach number. When it becomes equal to M∗∗, the flutter excitation is
hard: the amplitude increases sharply from zero to the amplitude of the stable limit cycle. Therein lies the
difference between the behavior of the plate as the Mach number increases and decreases.

7. OSCILLATIONS OF RECTANGULAR PLATES

Let us examine the changes in the above analysis when we consider the nonlinear oscillations of a
rectangular plate exposed to a supersonic gas flow parallel to one of its edges. We will take the x axis
parallel to the gas velocity vector and the y axis perpendicular to it in the plane of the plate. As before, we
will use the Kármán model [5, § 7]. The dimensionless equations of motion of an isotropically stretched
plate consist of two equations for the deflection w and the Airy stress function Φ:

D∆2w − M2
w∆w +

∂ 2w
∂ t2 − P{w} = Λ(w, Φ),

1
12(1 − ν2)D

∆2Φ = −1
2

Λ(w, w).
(7.1)

Here, ∆ is the two-dimensional Laplace operator, all the dimensionless parameters are the same as in
Section 1, and

Λ(w, Φ) =
∂ 2w
∂x2

∂ 2Φ
∂y2 +

∂ 2w
∂y2

∂ 2Φ
∂x2 − 2

∂ 2w
∂x∂y

∂ 2Φ
∂x∂y

.

The plate occupies the domain −Lx/2 ≤ x ≤ Lx/2, −Ly/2 ≤ y ≤ Ly/2. Hinged or clamped boundary
conditions jamming are imposed on the deflection w at the edges. In constructing approximate solutions for
Φ, it is customary to use integral boundary conditions relating the displacements of the plate edges with the
stiffness of the ribs of the structure into which the plate is built.

We will first consider the changes associated with the pressure P{w}. Considering the deflection in the
form of the natural oscillation mode and assuming that the time dependence is harmonic, we will use the
pressure calculation method proposed in [3]. The pressure can be calculated in the same way as in the plane
case (Section 3) but the Mach number M must be replaced by M cosα , where α is the angle between the
plane of the traveling waves of which the natural oscillation consists and the x axis [3]. In particular, for
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Fig. 3 Fig. 4

Fig. 3. Plate deflection amplitudes divided by the thickness (expressions (5.6) multiplied by
√

2/L) for parameters (1.3)
and L = 50, 100, and 300. The continuous and broken curves correspond to C(M) and C31(M), respectively.

Fig. 4. Domains of attraction of solutions (5.1). The continuous and broken curves correspond to the stable and unstable
limit cycles, respectively.

hinged support on all the edges α = arctan(Lxn/(Lym)), where m and n are the numbers of half-waves of
the eigenfunction in the x and y directions, respectively.

We now go over to changes related with the nonlinear terms. To be specific, let there be a high-frequency
flutter on the first oscillation mode and, in accordance with the Bubnov–Galerkin method, let us w(x, y, t) =
W1(x, y)A1(t), where W1(x, y) satisfies the normalization condition

∫ ∫
W 2

1 dxdy = 1,

the integration being carried out over the entire surface of the plate. By means of the method described in
[5, §19–20], system (7.1) can be reduced to the following equation for the amplitude:

∂ 2A1

∂ t2 − 2p12(ω)
∂A1

∂ t
+ ω2

01A1 + K1A3
1 = 0.

In particular, for hinged support on all the edges and the fixed edge condition (absolutely rigid ribs of the
structure in which the plate is embedded) the expression for K1 has the form:

K1 = Dπ4 3(1 − ν2)(L4
x + L4

y) + 6(L4
x + 2νL2

xL2
y + L4

y)
L5

xL5
y

.

The equation obtained completely coincides with (5.1) if we make the substitutions Ka2
11 ↔ K1 and

M ↔ Mcosα . This makes it possible to use the results of Section 5 directly. In the zeroth approximation
the stable limit cycle has the form:

A1(t) = C(ω)cos(ωt), C(ω) =

√
4(ω2 − ω2

01)
3K1

, ω = ω ′(M),

where ω ′(M) is a solution of the equation p12(ω) = 0 such that ω ′ > ω01.
As an example, we will calculate the amplitude of the limit cycle of the oscillations of a hinged plate

when Mw = 0 assuming that flutter develops in the lowest mode (m = n = 1). Since

ω01 =
√

D
π2(L2

x + L2
y)

L2
xL2

y
,
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repeating the algebra of Section 5, we find

ω ′(M) = (M cosα − 1)
π
√

L2
x + L2

y

LxLy
.

Since ω01 = ω ′(M∗), we finally obtain

C(M) =
2π

√
L2

x + L2
y

√
(M + M∗)cos α − 2√

3K1LxLy

√
(M − M∗)cosα . (7.2)

We will consider a 220× 750× 1.5 mm steel plate with the wide side positioned across the flow. We
will use parameters (1.3), Lx = 146.67, and Ly = 500. Calculations based on [3] give M∗ = 1.15, the lowest
mode, for which α = 0.29, being first to enter the instability domain. Since

W1(x, y) =
2√
LxLy

cos

(
πx
Lx

)
cos

(
πy
Ly

)
,

it is necessary to multiply expression (7.2) by 2/
√

LxLy to obtain the amplitude divided by the plate thick-
ness. In Fig. 5 we have reproduced the calculation results. Clearly, with penetration into the flutter domain
the amplitude growth rate is of the same order as in the plane case (Fig. 3). The next oscillation mode
(it has two half-waves in the direction of flow and one in the transverse direction) becomes unstable when
M = 1.21; at this Mach number the amplitude of the lowest mode is approximately equal to the plate thick-
ness.

8. COMPARISON OF THE AMPLITUDES FOR HIGH- AND LOW-FREQUENCY FLUTTER

In the notation used in the present study, for low-frequency flutter the dependence of the oscillation am-
plitude divided by the thickness on the Mach number for a hinged rectangular plate, calculated in accordance
with [4, §4.15–4.18], has the form:

A(M) = A0

√
M

Mcr − 1
, A0 =

4
3

√
6L2

x + 15L2
y

12L2
x + (45 − 15ν2)L2

y
. (8.1)

Here, Mcr is the critical Mach number for low-frequency flutter

Mcr =
D

µL3
x

9π4

16

(
5 + 2

L2
x

L2
y

)
.

These formulas were obtained using the linear piston theory for the gas pressure and the two-term
Bubnov–Galerkin approximation. Due to the use of only two terms the value of Mcr for plates elongated
in the direction perpendicular to flow is underestimated by approximately 20% as compared with the ex-
act value [8]. Nevertheless, formula (8.1) is perfectly suitable for estimating the amplitudes developing in
flutter.

For the plate considered in the example in Section 7 the critical Mach number for low-frequency flutter
Mcr = 15.3. This lies far beyond the limits of applicability of the piston theory. Therefore, in our calculations
we will consider plates with the same relative dimensions (Lx/Ly = 220/750) but having lower Mcr due to
their mechanical properties. In Fig. 6 we have reproduced the dependence A(M) for several cases.

Comparing the amplitude growth with penetration into the instability domain for low- (Fig. 6) and
high-frequency (Figs. 3 and 5) flutter, we can readily see that the amplitude grows much more rapidly
for high-frequency flutter. This is related with the mechanism of maintenance of the nonlinear oscillations
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Fig. 5 Fig. 6

Fig. 5. Deflection amplitudes of a rectangular plate divided by the thickness (expressions (7.2) multiplied by 2/
√

LxLy) for
parameters (1.3), Lx = 146.67, and Ly = 500.

Fig. 6. Deflection amplitudes of a rectangular plate divided by the thickness for low-frequency flutter; Lx/Ly = 146.67/500,
and Mcr = 1.15, 2, and 3.

in high-frequency flutter: the gas flow “chooses” the oscillation frequency ω ′(M) which strongly depends
on the Mach number. In its turn, owing to the nonlinearity, this frequency uniquely determines the amplitude
which, as a result, grows strongly with increase in M.

Summary. A new method for calculating the pressure acting on a plate exposed to high-frequency os-
cillations is proposed. The amplitudes of the nonlinear oscillations developing for in high-frequency plate
flutter in the two-dimensional (strip) and three-dimensional (rectangular plate) formulations are investigated
using this method.

In the case of instability with respect to a single mode the frequency of the stable limit cycle is deter-
mined by the condition of vanishing of the work done by the gas pressure over the oscillation period. The
amplitudes of the growing and damped modes are calculated from the frequency using the ordinary equa-
tions of nonlinear oscillation of a plate in a vacuum, i.e., the high-frequency flutter oscillations of a plate in
a flow can be represented as forced oscillations in a vacuum with a given frequency of the growing mode.

An explicit dependence of the amplitude and the frequency of the limit cycle on the problem parameters
is obtained. It is shown that a second limit cycle develops as the Mach number increases. This cycle is
unstable and separates the domains of attraction of the state of rest and the stable limit cycle.

The amplitude growth rates with penetration into the instability domain are compared for high- and
low-frequency flutters and it is shown that the growth is much stronger for high-frequency flutter.

The work was carried out with support from the Russian Foundation for Basic Research (project No.
05-01-00219) and the Program in Support of Leading Science Schools (NSh-4710.2006.1).
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