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Abstract—In classical investigations of panel flutter it is usually assumed that the gas pressure acting
on the plate can be calculated within the framework of the piston theory, an approximation exact for high
Mach numbers. The loss of stability revealed in these investigations is of the “coupled” type, involving
the interaction of two oscillation modes. Recently, the use of asymptotic methods revealed another
single-mode type of stability loss, which cannot be obtained within the framework of the piston theory.
In the present study this type of stability loss is investigated numerically using the Bubnov–Galerkin
method.
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Panel flutter, the oscillatory loss of stability of aircraft panels in the form of flat plates or shallow shells,
has been investigated in numerous studies (see, for example, [1–6]). In the vast majority of these studies the
“piston theory”, an approximation at large Mach numbers of the exact expression for the pressure acting on
an oscillating plate. Complications such as nonlinearity, inhomogeneity, or complex plate geometry in plan
are usually introduced only into the “elastic” part of the problem.

A comparison of the results of piston theory calculations with experiments reveals very good agreement
for Mach numbers exceeding 1.7 [1]. With decrease in the Mach number the difference between theory
and experiment increases significantly. In order to explain this effect, various suggestions have been made
[3, 4]. In particular, it was conjectured that the piston theory loses accuracy as a result of the development
of “flutter with a single degree of freedom” [7] or single-mode flutter when a single oscillation mode loses
stability without interaction between modes (in contrast to what the piston theory predicts [8, 9]). However,
in spite of isolated publications [10–12], panel flutter at low supersonic Mach numbers appears not to have
been systematically studied.

Recently, using asymptotic methods, single-mode flutter was detected analytically (in these studies it is
called “high-frequency” flutter) [13–15]. It is of interest to investigate the possibility of development of this
flutter type numerically, using the exact aerodynamic theory, at low supersonic Mach numbers when the
piston theory is not applicable.

1. FORMULATION OF THE PROBLEM

We will consider a flat elastic plate with a plane-parallel supersonic inviscid perfect gas flow on one side.
On the other side the plate is subjected to a constant balancing pressure (Fig. 1). The plate is embedded in
an absolutely rigid plane that separates the gas flow from the constant-pressure region.

We will consider the problem in the two-dimensional formulation and will assume that the plate has the
form of a strip in plan and the incident flow is perpendicular to the edges. We will also assume that the
plate oscillates with a deflection w(x, t) = W (x)e−iωt , where ω is the complex frequency (the deflection
is divided by the thickness). The dimensionless equation of the plate motion in the gas flow can then be
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Fig. 1. Diagram of the system considered.

written as follows:

D
∂ 4W
∂x4 − ω2W + p{W, ω} = 0. (1.1)

The pressure p{W, ω} found from the linearized potential gas flow theory has the form [1, §4.7]:
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The dimensionless parameters can be expressed in terms of the dimensional ones by means of the for-
mulas

D =
E

12(1 − ν2)a2ρm
, L =

Lw

h
, M =

u
a
, μ =

ρ
ρm

.

Here, E , ν , and ρm are Young’s modulus, Poisson’s ratio and the density of the plate material, Lw and
h are the plate width and thickness, and u, ρ , and a are the gas density, velocity and speed of sound. The
parameters D and L are the dimensionless plate stiffness and width, and M and μ are the Mach number and
dimensionless density of the gas.

The plate occupies the region 0 ≤ x ≤ L and on its edges hinged-support conditions are assigned:

W =
∂ 2W
∂x2 = 0, x = 0, x = L. (1.3)

Problem (1.1)–(1.3) is an eigenvalue problem for the complex frequency ω . The system is unstable if
and only if one of the eigenfrequencies ωn lies in the upper half-plane of the complex plane Imωn > 0.

In what follows, for comparison with the exact expression for the pressure (1.2), we will also perform a
calculation in accordance with piston theory in the form of the relation

p{W, ω} =
μM√

M2 − 1

(
−iωW (x) + M

∂W (x)
∂x

)
(1.4)

which can obviously be obtained from the exact expression (1.2) by discarding the integral term.
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Fig. 2. Convergence of iterations in ω with increase in the number of basis functions, n = 1, 2, and 3 are the mode numbers;
D = 23.9, M = 1.2, μ = 1.2×10−4, L = 300.

2. NUMERICAL METHOD

We will solve the eigenvalue problem by the Bubnov–Galerkin method. Taking the plate oscillation
shapes in a vacuum as basis functions we will represent the approximate solution in the form:

W (x) =
N

∑
n=1

CnWn(x), Wn(x) = sin

(
nπx

L

)
.

Here, Cn are unknown constant coefficients. Substituting this expression in (1.1), multiplying succes-
sively by Wm(x) (m = 1 . . .N) and integrating from 0 to L, we obtain a homogeneous system of linear
algebraic equations for Cn with the matrix

A(ω) = K + P(ω) − Lω2

2
I.

Here, K is the diagonal stiffness matrix with the coefficients k j j = D( jπ/L)4(L/2) and k jn = 0 for j �= n
and P is the matrix of the aerodynamic forces with the coefficients

pjn(ω) =

L∫

0

P{Wn, ω}Wj dx, (2.1)

and I is a unit matrix. The equation for the eigenvalues has the form:

det A(ω) = det

(
K + P(ω) − Lω2

2
I
)

= 0. (2.2)

The matrix P(ω) is complex and asymmetric, with all the coefficients different from zero. Hence, the
eigenvalue problem is not self-conjugate and the eigenfrequencies, solutions of (2.2), are complex.

We will solve Eq. (2.2) numerically using a simple iteration method. Let us calculate the n-eigenfrequency
ωn. As an initial value we will take the n-th plate oscillation eigenfrequency in a vacuum ω0n =

√
D(nπ/L)2.

Now let us consider the p-approximation ω p
n . We construct the matrix Ap+1(ω p

n , ω p+1
n ) so that ω p+1

n en-
ters into it in a simple way. We will take all the matrix coefficients ajk, except for ann, equal to those of the
matrix A(ω p

n ) and calculate the coefficient ann from the formula

ann = knn + pnn(ω p
n ) − L(ω p+1

n )2

2
,

where knn and pnn are the corresponding coefficients of the matrices K and P. For the p + 1-approximation
of ω p+1

n we have the equation
detAp+1(ω

p
n , ω p+1

n ) = 0,

FLUID DYNAMICS Vol. 44 No. 2 2009



NUMERICAL INVESTIGATION OF SUPERSONIC PLATE FLUTTER 317

Fig. 3. Trajectories of the first four eigenfrequencies in the complex plane for D = 23.9, μ = 1.2× 10−4, L = 300, and
1.5 ≤ M ≤ 2.7. Points 1 and 2 are the frequencies for M = 1.5 and 2.7, point 3—frequencies in a vacuum. The continuous
curves are calculated from the exact theory and the broken curves from the piston theory.

which is obviously linear in (ω p+1
n )2

. From the two values of ω p+1
n we take the value which lies in the right

half-plane of the complex plane: Reω p+1
n > 0.

The iterations for calculating ωn are continued until the following condition is satisfied:

ω p
n − ω p−1

n

ω p
n

< ε1.

After convergence is reached the condition detA(ω p
n ) < ε2 is checked. In the calculations we took the

values ε1 = 10−5 and ε2 = 10−16.
In each iteration only the matrix P(ω p

n ) is numerically calculated. For calculating each coefficient
pjk(ω

p
n ), it is necessary to find two nesting integrals: inner from (1.2) and outer from (2.1). The inner

integral is calculated by Simpson’s method and the outer one by the trapezoidal rule.
The calculations were performed using five basis functions (N = 5). From Fig. 2, which shows the

convergence of the numerical method with increase in the number of basis functions, it can be seen that five
functions are sufficient to calculate the eigenfrequencies with reasonable accuracy.

3. CALCULATION RESULTS FOR M ≥ 1.5

All the calculations were performed for a steel plate in an air flow (E = 2× 1011 N/m2, ν = 0.3, a =
300 m/s, ρ = 1 kg/m3, and ρm = 8500 kg/m3). The corresponding dimensionless parameters are equal to
D = 23.9 and μ = 1.2×10−4.

We will first consider the results of calculations based on the exact theory. We fix the plate width L = 300
and the Mach number M = 1.5. All the eigenvalues now lie in the lower half-plane (Fig. 3) and the position
of the plate is stable. We increase the Mach number leaving all other parameters fixed. The first two
eigenfrequencies converge and at M = 2.27 almost coincide. With further increase in M they diverge in
directions perpendicular to their trajectories before convergence: the first frequency moves upward and
the second downward, almost parallel to the imaginary axis ω . At M = 2.29, that is, almost immediately
after merging, the first frequency intersects the real axis and is displaced into the upper half-plane: the
situation of the plate becomes unstable. “Coupled” flutter develops due to the interaction of the two lowest
eigenfrequencies through an aerodynamic coupling. On the range 1.5 < M < 2.7 the third and higher
eigenfrequencies vary only slightly and their motion in the complex plane does not lead to instability.

In Fig. 3 the broken curve shows the same trajectories of the eigenfrequencies in the complex plane, but
calculated using the piston theory instead of the exact one. Clearly, on the range M > 1.5 the frequencies
calculated in accordance with the exact and piston theories are very similar. After the frequencies merge,
“coupled”-type stability loss takes place at M = 2.30, that is, the approximate critical Mach number almost
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Fig. 4. Trajectories of the first four eigenfrequencies in the complex plane for D = 23.9, μ = 1.2× 10−4, L = 300, and
1.05≤M≤ 1.5. Points 1 and 2 are the frequencies for M = 1.05 and 1.5, point 3—frequencies in a vacuum. The continuous
curves are calculated from the exact theory and the broken curves from the piston theory.

coincides with the exact one. With further increase in M the difference between the eigenfrequencies cal-
culated in accordance with the exact and piston theories almost disappears, which again confirms that the
piston theory, while being much simpler than the exact one, works well at large M.

4. CALCULATION RESULTS FOR M < 1.5

We will now decrease the Mach number from 1.5 to 1.05, assuming the other parameters to be fixed.
As can be seen from Fig. 4, at a certain M∗∗

n the n-eigenvalue is displaced into the upper half-plane. The
calculated M∗∗

n values are reproduced below:

n 1 2 3 4

M∗
n < 1.05 1.10 1.10 1.17

M∗∗
n 1.41 1.41 1.44 1.45

The frequencies do not approach one another, that is, there is no interaction of two oscillation modes
as in coupled flutter. Thus, this instability is flutter with a single degree of freedom [7] or, in other words,
single-mode flutter.

With further decrease in M the oscillation increment of each of the modes reaches a maximum and then
begins to decrease. At a certain M = M∗

n it becomes negative again and the corresponding mode begins to
be damped (the calculated M∗

n are presented above). Thus, on the range M∗
n ≤ M ≤ M∗∗

n each of the four
modes in question lies in the zone of single-mode instability.

For M < 1.5 the results calculated in accordance with the piston theory and represented in Fig. 4 by the
broken curve differ sharply from the results obtained using the exact theory. Firstly, within the framework
of the piston theory, single-mode flutter cannot be observed at all. Up to M = 1.10 all the frequencies lie in
the lower half-plane. At M = 1.10, a coupled-type flutter develops, with the 1st and 2nd modes involved,
but it has no physical meaning. In fact, coupled-type flutter develops when in formula (1.4) the coefficient
μM2/

√
M2 − 1 of ∂W/∂x becomes large. This takes place at both fairly large Mach numbers (like the

flutter at M > 2.30 obtained above) and M close to unity.
It was previously known that for M close to unity the piston theory becomes quantitatively incorrect but

the above calculations based on the exact theory show that it is also qualitatively incorrect: it “does not see”
the single-mode flutter, which actually develops, and yields another coupled-type instability region, which
in fact is not there.

FLUID DYNAMICS Vol. 44 No. 2 2009



NUMERICAL INVESTIGATION OF SUPERSONIC PLATE FLUTTER 319

Fig. 5. Typical shape of the curve Ω and construction of the eigenfrequencies from the asymptotic theory.

5. COMPARISON OF THE NUMERICAL AND ASYMPTOTIC
RESULTS FOR VARIABLE M

The calculations results revealing two types of stability loss, coupled and single-mode, correlate with the
results of [13], where both flutter types (there called “low-” and “high-frequency” flutter) were analytically
investigated using the asymptotic global-stability method. Most transparent is the method of calculation of
the eigenfrequencies that lie close to the single-mode stability region. Let us consider this method.

In [13] it was shown that for a sufficiently large plate width L the eigenfrequencies of a plate in a gas
flow lie near the curve Ω in the complex plane ω and this curve depends on the parameters M, μ , and D but
not on L (Fig. 5). Assuming that the gas effect on the absolute value of the eigenfrequencies is slight (since
μ � 1) and Imω � Reω , we obtain the following graphic method for calculating the eigenfrequencies. We
plot the curve Ω in the complex plane and on the real axis mark off the plate eigenfrequencies in a vacuum.
The eigenfrequencies of the plate in the flow can then be found as the projections of the eigenfrequencies in
a vacuum on Ω along the straight lines Reω = const (Fig. 5).

From this there follows the behavior of the frequency trajectories with variation of the problem param-
eters. With change in the Mach number M the plate frequencies in a vacuum remain unchanged, whereas
the curve Ω changes and, moreover, the boundaries of the interval ω∗∗ < Reω < ω∗ on which Ω lies in the
upper half-plane are displaced:

ω∗(M, D) ≈ (M − 1)2
√

D
, ω∗∗(M, D) =

M2 + 1 −
√

4M2 + 1√
D

.

The above expression for ω∗ is correct with the order of accuracy μ2/3, ω∗∗ is positive for M >
√

2, and
for M ≤

√
2 the curve Ω lies in the upper half-plane over the entire interval 0 < Reω < ω∗.

Finally, we obtain the following pattern. For sufficiently large M we have ω0n < ω∗∗ and the n-mode is
damped. With decrease in M the points ω∗∗ and ω∗ move leftward, at M = M∗∗

n (which can be found from
the condition ω0n = ω∗∗) Imω becomes positive, reaches a maximum, decreases, and at M = M∗

n (which
can be found from the condition ω0n = ω∗) becomes negative again. The same behavior was observed in
the numerical calculations for M < 1.5 described above.

The M∗∗
n and M∗

n values calculated from the asymptotic theory are presented below:

n 1 2 3 4

M∗
n 1.05 1.10 1.15 1.20

M∗∗
n 1.42 1.43 1.44 1.46

At too large M, when ω0n � ω∗∗, the assumption of the small variation of Reωn with variation of M is
incorrect. The link between the different plate modes through the gas flow becomes strong, with increase in
M the frequencies approach each other, and coupled-type flutter develops.
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Fig. 6. Trajectories of the first five eigenfrequencies in the complex plane ω for D = 23.9, μ = 1.2× 10−4, M = 1.2 (a),
M = 1.5 (b), and variable L. The continuous curves are calculated from the exact theory and the broken curves from the
piston theory (in the latter case all the trajectories coincide). The mode numbers are shown.

6. COMPARISON OF THE NUMERICAL AND ASYMPTOTIC
RESULTS FOR VARIABLE L

Especially simple is the behavior of the eigenfrequencies of a plate in a flow that follows from the
asymptotic theory for fixed D, M, and μ and variable L. In fact, in this case the Ω position in the complex
plane is fixed, while the plate frequencies in a vacuum vary. From this it follows that the trajectories of all
the frequencies coincide with each other and Ω.

Figure 6 shows the eigenfrequency trajectories calculated in accordance with the exact aerodynamic
theory for fixed parameters D = 23.9, μ = 1.2× 10−4, M = 1.2 and 1.5 and variable L. For M = 1.2,
calculations in accordance with the asymptotic theory yield ω∗ ≈ 0.0082 and ω∗∗ =−0.0327, which means
that Ω lies in the upper half-plane on the range 0 < Reω < 0.0082. For M = 1.5 the results are analogous:
ω∗ ≈ 0.0511 and ω∗∗ = 0.0179, that is, Ω lies in the upper half-plane on the range 0.0179 < Reω < 0.0511.
As can be seen from Fig. 6, the asymptotic and numerical calculations yield similar ω∗ and ω∗∗ values at
M = 1.2 for all modes and at M = 1.5 starting from n = 4.

However, despite the relative proximity of the asymptotic and numerical stability limits, the numerically
calculated trajectories themselves, that is, the oscillation amplification increments, lie far away from the
asymptotic trajectories. For example, the quantity δmax (Fig. 5) calculated from the asymptotic theory is
equal to 0.00037 for M = 1.2 and 0.00035 for M = 1.5. Clearly, this value is about 1.85 times higher
than that obtained numerically from the exact theory for M = 1.2 and 8.75 times higher for M = 1.5. This
discrepancy can be explained as follows. The asymptotic solutions [13] were constructed in the form of
a linear combination of waves traveling over an imaginary unbounded plate. As a result, all the problem
boundary conditions were satisfied except for the impermeability condition on the absolutely rigid plane at
x < 0. Therefore, the pressures calculated in the neighborhood of the leading edge of the plate in accordance
with the asymptotic and exact theories differ sharply, which explains the pronounced difference in δmax. At
the same time, as calculations show, the effect of this difference on the instability itself and its limits is much
weaker and at small M > 1 can be neglected.

Summary. The behavior of the eigenfrequencies of a plate in a supersonic gas flow is numerically inves-
tigated for various problem parameters. For the gas pressure the exact and piston theories are used.

At low supersonic Mach numbers, within the framework of the exact theory, a single-mode flutter un-
detected by the piston theory develops. For this flutter type the stability limits are well described by the
asymptotic results previously obtained. At the same time, the oscillation amplification increments obtained
from the asymptotic theory are overestimated.

At higher Mach numbers a coupled-type flutter develops. Its stability limits calculated from the exact
and piston theories almost coincide.

The work was supported by the Russian Foundation for Basic Research (project No. 08-01-00618) and
the State Program of Support for Leading Science Schools (project No. NSh-1959.2008.1).
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