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The  development  of  the single  mode  flutter  of  an  elastic  plate  in  a supersonic  gas  flow  is investigated
in a non-linear  formulation.  In the  case of  a  small  depression  in the  instability  zone,  there  is  a  unique
limit  cycle  corresponding  to  a unique  growing  mode.  Several  new  non-resonant  limit  cycles  arise  when  a
second increasing  mode  appears  and  the domains  of  their existence  and  stability  are  found.  Limit  cycles
with  an  internal  resonance,  in which  there  is energy  exchange  between  the  modes,  can  exist  for  the  same
parameters.  Relations  between  the  amplitudes  of the  limit  cycles  and  the parameters  of the  problem  are
obtained that  enable  one  to  estimate  the  risk  of  the onset  of  flutter.

© 2013 Elsevier Ltd. All rights reserved.

The problem of studying the stability of elastic plates in a supersonic gas flow arises in connection with the phenomenon of panel flutter,
hat is, the intensive vibrations of the individual skin panels of aircraft that are moving at high speed. This type of flutter is not immediately
ssociated with wing and tail flutter but can also lead to fatigue damage accumulation and failure of the skin panels1

As a rule, piston theory, that is, the differential relation between the pressure perturbation and the flexure of the plate, is used 2–4 to
alculate the perturbation of the pressure acting on it in studying the flutter of a plate. This theory is the limit of exact linearized potential
ow theory when M→ ∞ or ω → 0 (M is the Mach number of the gas flow and � is the vibrational frequency). It is assumed that piston
heory works in practice starting approximately from M ≥ 1.7 3.

The principal disadvantage of piston theory lies in the fact that it can only describe the onset of one of the two forms of
anel flutter, that is, coupled flutter. At low supersonic speeds 1 < M < 2 The onset of another, single mode type of flutter occurs
hat can only be obtained using potential flow theory or more complex models. This type of flutter has been studied analyti-
ally (in the case of plates with large dimensions) 5 and numerically (in the case of arbitrary dimensions) 6 and experiments have
een carried out 7 that confirm the existence of single mode flutter. The non-linear problem has been investigated and the ampli-
ude of the limit cycle has been obtained in the case when only one mode is growing8 It has been shown that the increase
n the amplitude when there is a depression in the instability zone occurs far more rapidly than in the case of coupled flut-
er. However, the domain of single-mode flutter is small and, when a small increase in the flow velocity occurs, several modes
t once become growing modes. The limit cycles that occur in the case of flutter in several modes simultaneously are studied
elow.

. Formulation of the problem.

The non-linear vibrations of a tensioned elastic plate, over one side of which there is a plane-parallel supersonic flow of perfect inviscid
as (Fig. 1), are studied in the case of single-mode flutter. A constant pressure, equal to the unperturbed pressure of the flow, is applied to
he other side of the plate. The non-linearity of the problem is caused by the geometric non-linearity of the plate, that is, by the membrane
tresses arising under bending (Karman’s model of large deflections). The perturbation in gas pressure acting on the plate is assumed to
epend linearly on the deflection, since the aerodynamic non-linearity only has a considerable effect on the vibrations of the plate at very
igh (of the order of 10) Mach numbers M and in the transonic region.9
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Fig. 1.

The problem is considered in a two-dimensional formulation. After expressing the pressure perturbation in terms of the deflection of
he plate, the problem becomes a one-dimensional problem with one unknown function, the deflection. In dimensionless variables, the
quation of motion of the plate has the form (Ref. 10, §24)

(1.1)

Here, w(x, t) is the deflection of the plate normalized by its thickness, E, v and �m are Young’s modulus, Poisson’s ratio and the density of
ts material, Lw and h are the width and thickness of the plate, � is the tensile stress, u and � are the velocity and density of the gas,. and a
s the gas sound velocity. The plate tension (the coefficient of ∂2/∂x2) consists of two  parts: the first term is the constant tension applied to
he plate and the second term is the non-linear tension arising when the plate is deflected. The structural damping of the plate is neglected
it can be taken into account by reducing the aerodynamic growth rate introduced below by the magnitude of the damping factor). The
arameters D and L are the dimensionless stifness and width of the plate, Mw and K characterize its tension and non-linearity, and M and

 are the Mach number and the dimensionless gas density. The expression for K is written assuming that the edges of the plate are not
isplaced when the plate. bends otherwise, K < 12D. The operator P

{
w(x, t)

}
is the perturbation in the gas pressure. The plate occupies

he domain −L/2 ≤ x ≤ L/2 and the clamping or pinning conditions on the edges are specified.

. Amplitude equations

The problem is solved using the Bubnov-Galerikin method. We  expand the solution (1.1) in the orthonormal eigenfunctions of the plate
n a vacuum:

(2.1)

corrected with unknown amplitudes Aj(t). After applying the Bubnov-Galerkin procedure, we  obtain the system of equations in An(n = 1,
, ...)

(2.2)

here

Here, ajn = ajj > 0 and, in the special case of hinged support along both edges, ajn = 0 when j /= n.
It has been shown 8 that, in the case of single-mode flutter, when the effect of the flow on the natural modes of the plate is small:

(2.3)

The meaning of the last relation lies in the fact that, in the case of single-mode flutter, the action of the flow reduces to an aerodynamic
nhancement (or damping) of the vibrations. The aerodynamic enhancement coefficient pn2(�) depends on the characteristic frequency of
he vibrations and there is a frequency range ω

′′
n < ω < ω

′
n, where its sign is positive (the qualitative form of the function pn2(�) is shown

n Fig. 2) that corresponds to single-mode instability in the linear approximation. The values of ω
′
n and ω

′′
n are different for the different

odes. The explicit formula

(2.4)
is subsequently required where �n are constants occurring in the formula for the n-th natural frequency of the plate



V.V. Vedeneev / Journal of Applied Mathematics and Mechanics 77 (2013) 257– 267 259

3

I

t

t
r
t
f
r
t
i

i

l
t

Fig. 2.

that depend on the boundary conditions.
Grouping terms with different powers of An in Eqs (2.2) and taking account of the approximate equalities (2.3), we  obtain

(2.5)

. One linearly growing mode

Assuming that
∣∣An

∣∣ <<
∣∣A1

∣∣ , n > 1, all the terms containing amplitudes with an index greater than 1 in Eq. (2.5) for A1 can be discarded.
t is then written in the form

(3.1)

The limit cycles of this equation in the second approximation:

(3.2)

have been found 8 by the harmonic balance method.
Since, ω

′′
1 < ω01 < ω

′′
1, in the case when the first mode is an increasing mode in the linear approximation, we  obtain from relations (3.2)

hat vibrations with a frequency ω
′′
1 are impossible and there is only one limit cycle that has a frequency ω

′
1.

We will now consider the process of the enhancement of the vibrations and imagine that a small initial perturbation of the first mode
hat increases with time p12(ω01) > 0 is excited in the plate. On account of the non-linear term in Eq. (3.1), the amplitude and frequency are
elated to one another, and the frequency, following the amplitude, also starts to increase. An increase in the frequency implies movement
o the right along the curve p12 (�) (Fig. 2). Since, when no account is taken of the action of the gas, the solutions of Eq. (3.1) have the
orm of neutral vibrations with arbitrary amplitude, non-linearity in itself cannot lead to a cessation in the growth of the amplitude. As a
esult, as long as p12(ω) > 0 the amplitude and, consequently, also the frequency will continue to increase. When the frequency � reaches
he value ω

′
1, the value of p12 (�) becomes equal to zero and the enhancement gives way  to a neutral vibration. There will be no principal

nternal resonance, since ω
′
1 < ω

′
n < ω0n, n > 1. At the same time, fractional resonances are not excluded and they are considered below.

The arguments presented are clearly illustrated by the energy equation. We  multiply Eq. (3.1) by dA1/dt and transform it to the form

(3.3)

The left-hand side of the equality obtained is the change in the total vibrational energy. When p12(ω) > 0 it increases, when p12(ω) < 0

s decreases and it is only in the case when p12(ω) = 0 that the vibrations are neutral.

It follows at once from Eq. (3.3) that the limit cycle with a frequency ω
′
1 obtained is stable, since an increase (decrease) in the amplitude

eads to an increase (decrease) in the frequency and to the opposite effect on the part of the pressure, that is, to a decrease (increase) in
he energy and amplitude.
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Note that the relation between the amplitudes (3.2) and frequency is the same as that in the case of the non-linear vibrations of a plate
n vacuo. The difference lies in the fact that the frequency of the vibrations in vacuo can be arbitrary but in the flow it is determined by the
ondition ω = ω

′
1.

. Non-resonance multifrequency vibrations

Specific calculations show that the range of Mach numbers over which only one mode is growing is extremely narrow. We  will consider
he case when a second mode also becomes growing. Keeping the two amplitudes A1 and A2 in equalities (2.5), we  obtain the system of
quations

(4.1)

As earlier8 we assume that each of the steady- vibration modes is close to a harmonic vibration. The frequencies of the fundamental
armonics of the first and second modes are denoted by �1 and �2. Since system (4.1) does not separate, the solution for each amplitude
ontains not only the subharmonics of the fundamental frequency but also all possible harmonics with frequencies of the form mω1 ±
ω2, m, n ∈ N. Then, omitting the exact form of the solution on account of its length, we write out the harmonics that are important in the
econd approximation:

Here, v is the arbitrary phase shift between the first and second modes and the series in the remaining harmonics are replaced by the
ots. Assuming that the amplitudes of the fundamental harmonics C11 and C21 are much greater than those of the remaining harmonics,
e substitute these expressions into system (4.1) and equate the coefficients of cosω1t, sinω1t, cos(ω2t + ϕ), sin(ω2t + ϕ). We  then obtain

he system for the determining the amplitudes and frequencies of the fundamental harmonics.
We note the properties of the solutions of this system. The equations for the amplitudes (obtained from the equalities of the cosine

oefficients) are the same as for the vibrations of the plate in vacuo. Taking account of the action of the gas only reduces to the choosing
he specific frequencies ω1 = ω

′
1 and ω2 = ω

′
2 that are solutions of the equations p12 (�1) = 0 and p22 (�2) = 0 such that ω

′
1 > ω01 and

′
2 > ω02. The amplitudes of the higher harmonics are explicitly expressed in terms of C11 and C21 but the corrections introduced by them
re small.

The system of equations for C11 and C21 has three non-trivial solutions. The two solutions

describe the single-frequency first (j =1) and second (j = 2) vibration modes. The tr third solution is the two-frequency vibration:

(4.2)

Solving system (4.2) for the amplitudes, we obtain

(4.3)

These inequalities are a condition for the existence of a two-frequency limit cycle; single frequency limit cycles obviously always exist.
e will now investigate these conditions assuming, for simplicity, that identical boundary conditions are specified on the leading and

railing edges of the plate. Then, a12 = 0.
Substituting expressions (2.4) into inequalities (4.3), we rewrite them in the form

(4.4)
Here, M = M∗
j

are the boundaries of stability of the first mode (j = 1) and second mode (j = 2). In the case of the pinning conditions for

he plate edges a11/a22 = 0.25, x2
2/x2

1 = 4, � = 3/2 and, for the clamping condition, a11/a22 = 0.267, x2
2/x2

1 = 2.761, � = 1.106. It is easily
een that, under these conditions, inequality (4.4) is always satisfied since M∗

1 < M∗
2.
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The second inequality of (4.4) is not satisfied when M < M∗
2, that is, a two-frequency limit cycle does not always exist. Solving this

nequality for M,  we obtain

(4.5)

As an example, consider a metal plate in the air flow at sea level:

(4.6)

Then, M∗
1 ≈ 1.051, M∗

2 ≈ 1.102 in the case of pinning and M∗
1 ≈ 1.077, M∗

2 ≈ 1.128 in the case of clamping. The condition for the existence
f the two-frequency limit cycle (4.5) has the form M ≥ 1.162 and M ≥ 1.34 respectively.

We will now consider the stability of the limit cycles and write down the energy equation for the plate. To do this, we  multiply the first
quation of (4.1) by dA1/dt, the second equation by dA2/dt and add them together:

(4.7)

The expression on the left-hand side is the derivative of the total energy of the plate (the sum of the kinetic energy and potential energy)
nd the right-hand side is the work performed by the gas flow on the plate.

Suppose only single-frequency limit cycles exist. In the same way as in Section 3 it is proved that they are both stable with respect to
erturbations of the mode in which the vibrations occur: an increase in its amplitude leads to a reduction in the total energy and, as a
onsequence in its amplitude, while a decrease in the amplitude leads to an increase in the energy and amplitude.

We will now consider the perturbations of an initially quiescent mode. We will first consider the first mode and perturb second mode
y imparting a small amplitude C21 ≈ 0 to it. Its frequency �2 is determined from the first equation of (4.2) for j = 2. Since the inequality
4.3) when ω2 = ω

′
2 is not satisfied for j = 2 (otherwise a two-frequency limit cycle would exist), then ω2 > ω

′
2 whence p22 (�2) < 0. From

4.7), we then obtain that the vibrations conforming to the second mode decay and the limit cycle of the vibrations conforming to the first
ode is stable. We  now consider the vibrations conforming to the second mode and perturb the first mode, imparting a small amplitude

11 ≈ 0 to it. Its frequency �1 is determined from the first equation of (4.2) for j = 1. Since, when ω1 = ω
′
1, inequality (4.3) is strictly satisfied

or j = 1, then ω1 = ω
′
1. However, this means that p12(ω > 0) and the vibrations conforming to the first mode are growing. The limit cycle of

he vibrations conforming to the second mode is therefore unstable.
It can similarly be proved that, if a two-frequency limit cycle exists, it is stable, and both single-frequency limit cycles are unstable with

espect to perturbations of the initially quiescent mode. Hence, only one non-resonance limit cycle is stable and the number of modes
articipating in it is a maximum among the cycles that exist for the given problem parameters.

When M is increased and some mode emerges from the zone of instability ω0n < ω
′′
n, an unstable limit cycle appears with a frequency

f the vibrations conforming to this mode ω
′′
n, that separates the domains of attraction of the two  stable cycles in one of which this mode

articipates and, in the other of which, it does not participate. The appearance of this cycle has been considered 8 in the case of one growing
ode.
In the case of arbitrary boundary conditions and instability with respect to three or more modes, there are also limit cycles consisting

f a different number of modes, but their stability intervals can interact in a more complex manner than in the case of two modes. Note
hat the order of the amplitudes in nonresonance multi-frequency limit cycles is the same as in single-frequency limit, cycles, since they
re all described by equations of the type (4.2)

. Multifrequency vibrations with an even internal resonance

It is well known that, in the case of an external periodic force acting on a linear system, a resonance vibration only occurs if its
requency coincides with a natural frequency. In addition to the fundamental resonance, the existence of non-linearity also generates
ractional resonance vibrations with frequencies of the form pω/q, where p and q are integers.11–13 If a system consists of several coupled
ubsystems (like a plate, each mode of which can be considered as a separate subsystem), they can resonate with one another and generate
ibrations with an internal resonance.

We shall now consider vibrations for which there is a 1:2 internal resonance and, to be specific, we shall assume that the first and second
odes resonate. For simplicity, we shall confine ourselves in this Section to the case when identical boundary conditions are specified on

he edges of the plate, so that a12 = 0. We  shall also assume that the boundary conditions differ from the pinning conditions as, otherwise,
′
2(M) = 2ω

′
1(M) and the difference between the resonance and non-resonance limit cycle considired above vanishes.

We first note an important property of an even resonance. The cubic non-linearity in the case of such vibrations (a cosω1t + b cosω2t)3

ives, among other things, a harmonic with a frequency 2�1 - �2. In the case of 1:2 resonance, when �2 = 2�1, this harmonic is a constant
eflection of the plate from the equilibrium position. As will be seen below, it ensures that there is energy exchange between the modes
n the case of even resonance and it must be taken into account. We  will therefore seek a solution in the form

(5.1)
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We  will assume that, under the action of the flow, the plate executes quasiharmonic vibrations conforeming to the first mode,
c10| , |c12| << |c11| , which excite resonance vibrations conforming to the second mode with a doubled frequency, |c20| |c12| << |c22|.

Substituting this solution into Eq. (4.1) and equating the coefficients for all possible sines and cosines, we obtain a system of equations
or determining the amplitudes, frequencies and phase shifts. we need equations for the amplitudes of the fundamental harmonics in the
rst approximations which follow from the cosine relations, the solution of which has the form

(5.2)

and the expression for the amplitude of the deflection C20 in the second approximation

(5.3)

In the second approximation, the equations following from the equalities of the coefficients of the sines of the fundamental harmonics
ppear as:

(5.4)

(5.5)

In particular, the energy balance equation

(5.6)

follows from them and the physical meaning of this equation is as follows: the amount of energy transferred from the flow to the plate
ia the first mode after one period of the vibrations is equal to the amount of energy transferred from the plate back into the flow via the
econd mode. According to equality (4.7), the overall work of the flow on the plate after one period of the vibrations is equal to zero.

The system of equations for determining the amplitudes, frequencies and phase � consists of Eqs (5.2), (5.3), (5.4) and (5.6). The
quations following from the equalities of the coefficients of the cosines and sines of the subharmonics and the constant deflection C10 are
omogeneous and have the solution C10 = C12 = C21 = 0.

We will now prove that, for sufficiently small �, a stable limit cycle arises at the onset of a resonance of the second mode but prior to
he onset of non-resonance multi-frequency vibrations. Prior to the onset of the resonance C22 = 0, the amplitude C11 is determined by
xpression (3.2) and the plate executes single-frequency vibrations, ω = ω

′
1. The resonance solution arises at a frequency ω

′
1 > ω̂, when

he right-hand side of the second equality of (5.2) becomes positive. Here,

In this case, a limit cycle with an intermediate frequency exists. Actually, when ω = ω̂, the left-hand side of Eq. (5.6) is positive and,
hen ω = ω

′
1, it is negative. Condition (5.6) is therefore satisfied for some frequency. ω ∈ ( ω̂, ω

′
1).

The mutual arrangement of the curves C11, C22, p12(ω) and p22 (2�)  on the section [ ω̂1ω
′
1] is shown in Fig. 3 and the graphical solution

f Eq. (5.6) for different values of ω
′
1 is shown in Fig. 4.

Then, a solution � of Eq. (5.4) exists for sufficiently small �. Actually, the right-hand side is independent of � and the left-hand side can
lways be made as small as desired by taking a sufficiently small �. As a result, in the case of small �, Eq. (5.4) is solvable for � and a limit
ycle with an internal 1:2 resonance exists.

It is similarly proved that a resonance limit cycle arises for a fixed � if the amplitude C22 becomes sufficiently large. We  note that Eq.(5.4)
oes not have solutions � for a fixed � and a sufficiently small amplitude C22. This means that a resonance limit cycle does not arise when

 = M̂,  where ω
′
1(M̂) = ω̂, but it arises at a higher value of M,  and at once has a finite amplitude C22.

We will now prove that the limit cycle constructed for small � is stable. We  first consider the deviation of one of the frequencies from
 ratio of 1:2. With respect to the equations describing the vibrations conforming to the second mode when a12 = 0, the excitation of this
esonance is a parametric resonance caused by the presence of the second term in the second of equations (4.1). It is well known (Ref. 12,
17) that a parametric resonance is stable in the case of a fixed non-linearity coefficient and damping that tends to zero. In other words,

or small � the deviation of one of the frequencies from a ratio of 1:2 is automatically “corrected” with the passage of time, that is, there is
requency synchronization. It can therefore be assumed that this ratio is fixed and the amplitudes are, correspondingly, rigidly connected
ith the frequency by Eq. (5.2).

We  will now consider a small change in the frequency � without changing the 1:2 ratio. By virtue of equality (4.7), the left-hand side of
q. (5.6) is the change in the total energy of the plate after one period of the vibrations. We  now increase the frequency of the limit cycle �

which leads to an increase in the amplitudes of the two  harmonics). Then, by construction, the left-hand side of (5.6) becomes negative,
hat is, there is a flow of vibrational energy from the plate into the flow, that is, a return to the limit cycle. If, however, the frequency of the
imit cycle is reduced (the amplitudes are reduced), the plate starts to acquire energy from the flow, that is, there is again a return to the
imit cycle.
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We  emphasize that the stability of the resonance limit cycle is caused by the fact that, by virtue of the stability of parametric resonance,
he amplitudes of the two harmonics are rigidly connected to the frequency by Eq. (5.2) and they cannot be separately excited. In the case
f second mode single-frequency vibrations, the growth of the perturbation through the first mode (Section 4) was due to the fact that it
s generally possible to excite it separately from the second mode through which vibrations are already occurring.

In the proof of stability that has been presented, only perturbations of the frequencies and amplitudes were considered while preserving
he periodicity of the motion. The stability with respect to an arbitrary small perturbation requires a considerably more complex analysis,
ue to the fact that, in the case of an arbitrary non-periodic perturbation, it is no longer possible to reduce the unsteady gas pressure to
erodynamic damping and, in general, to any differential relation between the perturbation of the gas pressure and the bending of the
late. However, in the case of a tensioned extended plate under conditions of single-mode flutter (that is, of a weak effect of the flow on
he plate dynamics), the initial stage in the development of instability of the limit cycle apparently always only shows up in the form of a
radual evolution of the limit cycle, that is equivalent to the small change in the frequencies and amplitudes considered.

We will now estimate how this limit cycle evolves when there is a further increase in the Mach number. In the case of pinning
and, in the case of clamping

Fig. 4.
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In both cases (and, consequently, also for “intermediate” types of boundary conditions), the coefficient of �2 in the second equality
f (5.2) is greater than in the first. Hence, when the frequency increases after the onset of resonance, the amplitude of the second mode
ncreases more rapidly than the amplitude of the first mode. At the same time, the value of p12( ω̂) as M increases initially sharply increases
nd then decreases (see Fig. 2) while the quantity p22(2 ω̂) remains roughly constant. Hence, after the onset of resonance, there is one
table limit cycle, and the frequency lies in the section

[
ω̂, ω

′
1

]
nearer to the right end ω

′
1 (Fig. 4). When M is sufficiently increased, two

urther resonance limit cycles appear since two additional points of intersection of the graphs in Fig. 4 arise. At the same time, the cycle
orresponding to the middle point of intersection is unstable and there are therefore two  stable resonance limit cycles. The frequency
f the “new” limit cycle lies closer to the left end of the segment ω̂ and it corresponds to a lower frequency and smaller amplitude. The
nitial limit cycle does not vanish for small � since the maximum of p22 ∼ �2/3 and p22 ∼ �, that is, the maximum of p12(ω)C2

11 in Fig. 4
s always greater than −p22(ω)C2

22. This occurs until the frequency ω
′
2(M)  reaches the value 2 ω̂. When ω

′
2(M) > 2 ω̂, the frequency of the

eaker resonance cycle (if it has succeeded in appearing) increases: as previously, the left-hand side of Eq. (5.6) is negative when ω = ω
′
1

ut already positive not only when ω = ω̂ but also when ω = ω
′
2/2, since �2 < 2�1. The frequency of the “weak” resonance cycle therefore

ies in the interval ω
′
2 < ω < ω

′
1.

We will now summarize the results obtained. The arrangement of the curves describing the vibrations conforming to the second mode
s shown in the upper part of Fig. 5, the frequency of the non-resonance limit cycle ω

′
2(M), the doubled frequency of the non-resonance

ycle of the fist mode 2ω
′
1(M)  and the frequency of the small vibrations conforming to the second mode, in the case of the developed

on-resonance vibrations conforming to the first mode ω (ω1(M)) (the solution of the first equation of (4.2) for j = 2 when C = 0). The
2 1 21
late was clamped and the values of the parameters (4.6) and Mw = 0, which corresponds to the absence of tension in the plate, were taken.
hen 1 < M < 1.08, the plate is stable. When M ≈ 1.08 (point 1), the first mode becomes growing and a non-resonance limit cycle arises
ith a vibration frequency ω

′
1(M). When M ≈ 1.13 (point 2) the second mode becomes growing, but a stable limit cycle corresponding to it
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oes not arise (Section 4). When M ≈ 1.14 (point 3), the frequency ω
′
1(M) is equal to half the frequency of the small vibrations conforming

o the second mode and a second limit cycle arises, that is, a 1:2 resonance limit cycle. Starting from M ≈ 1.17 (point 4), the frequency and
mplitude of the second resonance cycle (if it has succeeded in emerging) start to grow. When M ≈ 1.34 (point 5), the non-resonance cycle
onforming to the first mode becomes unstable and a non-resonance two-frequency limit cycle conforming to the two first modes emerges
nstead of it. Starting from this instant, there are two stable limit cycles consisting of two modes, a non-resonance cycle and a resonance
ycle.

In a unique case, that is, the case of pinning when ω
′
2(M)  = 2ω

′
1(M), points 3, 4, and 5 coincide. In this case, the resonance limit cycle

oincides with the non-resonance limit cycle.
The amplitudes of the corresponding limit cycles divided by the thickness of the plate A =

√
2/L(C11 + C22) are shown for a clamped

late in the lower part of Fig. 5. Curve 1 is for the single-frequency cycle, 2 is for the 1:2 resonance cycle and 3 is for the non-resonance
wo-frequency cycle. It is seen that the resonance limit cycle has the greatest amplitude.

. Multifrequency vibrations with an odd internal resonance

Unlike an even resonance, as analytical study, even in the case of the simplest 1:3 resonance, meets with difficulties, since the equations
or the amplitudes of the fundaanmental harmonics contain a phase shift that must be determined from equations containing aerodynamic
mplification. A system of four non-separable non-linear algebraic equations is obtained, the solutions of which behave in a rather complex
anner. On account of this, the behaviour of the limit cycle is will henceforth be studied qualitatively.
To be specific, we shall assume that the first and third modes enter into the resonance. We  will seek a solution in the form

(6.1)

The system of equations is obtained from system (4.1) by replacing the index 2 by 3. We  shall assume that, under the action of the flow,
he plate executes quasiharmonic vibrations conforming to the first mode, C13 � C11, which excite resonance vibrations of a third mode
ith a trebled frequency, C3 � C33.

Substituting (6.1) into the system of equations, we  write out the cosine equations, that is, the equations for the amplitudes, and the sine
quations, that is, the equations for the phase shifts. Only the leading terms are retained in the equations for the fundamental amplitudes
11 and C33 (obtained from the relations for cos �t in the equation for A1 and for cos(3ωt + ˇ) in the equation for A2). We  obtain

(6.2)

Here,

Unlike solution (5.2), terms with cos�,  that are now important in the first approximation, have appeared in the equations. The equations
or the subharmonics express C13 and C31 in terms of the fundamental amplitudes; they are no longer required.

We now turn to the equations obtained by equating the coefficients on the sines of the fundamental harmonics, retaining only the
eading terms:

(6.3)

(6.4)

hence, in particular, it follows that

(6.5)

hich expresses the following: the amount of energy transferred from the flow to the plate via the first mode after one period of the
ibrations is equal to the amount of energy transferred by the plate back into the flow via the third mode. The overall work of the flow on
he plate after a period of the vibrations is equal to zero by virtue of equality (4.7).

The equations following from equating the coefficients on sin(3�t + �) in the equation for A1 and sin(ωt + ˛) in the equation for A3 serve
o determine the phase shifts 	 and � and these equations always have a solution.

The main difficulty, as mentioned above, is the fact that system (6.2) contains the phase shift �, determined from Eq. (6.3). Numerical
olutions of system (6.2) are shown in Fig. 6 for different values of cos� (in the case of clamped plate, D = 19.78,  Mw = 0, L = 300). Suppose
he frequency ω

′
1 exceeds the resonance frequency ω̂ corresponding to cos� = 0 and system (6.2) has the solutions C11 and C33. It is proved

xactly the same way as the case of 1:2 resonance that Eq. (6.5) has a root �, the vibration frequency of the resonance limit cycle. The phase

, that can be made equal to ±
/2 by a suitable choice of �, is then determined from (6.3). The solution “makes itself self-consistent” in

he sense that the set of quantities C11, C33, �, � = 
/2 obtained for a chosen value of � satisfies system of equations (6.2), (6.3) and (6.5).
We now fix this value of � and, by increasing the Mach number M,  we somewhat change the frequency of the cycle and, correspondingly,

he amplitudes. Near the resonance frequency ω̂, the rate of change in C33 (�) is infinite (since C33(ω)∼
√

ω − ω̂) and, consequently, the
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ate of change of the right-hand side of (6.3) when sin� = 1 is also infinite while the left-hand side is finite. We obtain that, when � =

/2, Eq. (6.3) cannot be satisfied and, consequently, its solution  ̌ /= �/2. It is seen in Fig. 6 that, in this case, three resonance solutions
re formed instead of one. However, they cannot all always satisfy Eqs (6.3) and (6.5).

A numerical investigation of system (6.2), (6.3), (6.5) shows that, depending on the values of the parameters � and M,  an increase in M
an lead both to a transition of the only resonance solution onto the branch in Fig. 6, that has the smallest amplitude (the resonance limit
ycle remains unique), as well as to the simultaneous formation of three resonance limit cycles.

. Conclusion

It has been shown that the non-linear vibrations of a plate in the case of single-mode flutter can have different limit cycles, that is,
on-resonance limit cycles for which the vibrations conforming to each mode occur such that there is no energy exchange with the flow
nd resonance limit cycles for which energy is transferred from the flow to a mode of the plate and then, through non-linear coupling, this
nergy is transferred to another mode that then transfers it back into the flow.

In the case of instability in one mode, there is a unique stable limit cycle and its frequency is determined by the condition that the work
erformed by the pressure of the gas over a vibrational period is equal to zero. Its amplitude is calculated using the frequency from the
sual equations for the non-linear vibrations of a plate in a vacuum, that is, the single-mode flutter vibrations of a plate in a flow can be
epresented as free non-linear vibrations in a vacuum with the specified frequency of the linearly growing mode. The explicit dependence

f the amplitude and the frequency of the limit cycle on the parameters of the problem is obtained.

In the case of an increase in the flow velocity and the appearance of a second growing mode at a certain time, as previously the cycle
onsisting of just the first mode is the unique stable non-resonance limit cycle. A still greater velocity is required in order for a non-resonance
imit cycle consisting of both modes to arise and, in this case, the cycle consisting of the one mode becomes unstable.
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Other stable limit cycles can exist for the same problem parameters in which two or more modes are in internal resonance and exchange
nergy as described above. The existence of such a cycle has been proved using the example of an internal 1:2 resonance. In the case of a
:3 resonance, it is more difficult to establish the domains of existence and stability of such a limit cycle. The vibration amplitude is greater

n the case of a resonance limit cycle than in the case of non-resonance limit cycles. Resonance cycles are therefore more dangerous.
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