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a b s t r a c t

Single mode panel flutter is one of two panel flutter types that can occur at low supersonic
flow speeds. Over the years it is considered by researchers and engineers as weak and
being unable to occur on a real structure due to small growth rate, easily suppressible by
the structural damping of the panel. Though recent experiments demonstrated that this
opinion is wrong, and single mode flutter can actually occur, it is still unknown what
damping level the structure should have to avoid flutter. In this paper we study flutter of
damped panels at low supersonic speeds. It is shown that for typical structural damping
levels single mode flutter is not always avoidable. Moreover, for some conditions damping
level necessary to suppress flutter is too high and cannot be achieved by the structure
itself.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Panel flutter can be caused by two different mechanisms of flow–structure interaction. The first, and most studied
mechanism consists in coupling of two structural eigenmodes via the gas flow. In accordance with that, corresponding
instability is called coupled-mode flutter. In terms of eigenfrequencies loci, in point of stability-flutter transition two
eigenfrequencies coalesce, giving another name to this phenomenon: coalescence flutter. This type of flutter has been
studied in numerous (more than 700) papers by using piston theory for modelling of unsteady aerodynamic flow; we
mention only principal publications by Movchan (1957), Bolotin (1963), Dowell (1974), Mei et al. (1999) and Algazin and
Kiiko (2003). An interesting paper was recently published by Visbal (2012), who studied panel flutter in the presence of an
impinging oblique shock wave.

The other flutter mechanism consists in amplification of bending waves by the flow, with no mode coupling and no
significant change of the mode shapes. This type of flutter is usually called single mode flutter, or single degree of freedom
flutter, and sometimes referred to negative aerodynamic damping of the plate. It is studied much less: the only papers
appeared in literature are those by Nelson and Cunnigham (1956), Lock and Farkas (1965), Dowell (1974), Yang (1975),
Bendiksen and Davis (1995), Gordnier and Visbal (2001) and Hashimoto et al. (2009). This is mainly because of two reasons.
First, single mode type of flutter typically occurs at low supersonic speeds, where piston theory is not valid, and one needs
to use much more complicated aerodynamic models (potential flow, Euler, Navier–Stokes equations, etc.) Second, single
mode flutter is usually considered as “weak”, i.e. unable to occur on real structures because of small growth rate: it is almost
always suppressed by the structural damping.
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However, recent experimental investigations (Vedeneev et al., 2010) demonstrated that single mode flutter can actually occur,
moreover, several eigenmodes were simultaneously excited. Numerical study (Vedeneev, 2012), where panel damping was not
taking into account, showed that single mode flutter can indeed occur in several eigenmodes, such that each of them has its own
flutter boundary.

From practical point of view it is important to know influence of structural damping. First, to understand, for which
conditions growth rate is small, and single mode flutter indeed will not occur. Second, structural damping is the primary
way to suppress single mode flutter, and aircraft designers need to know how much damping the structure must have to
avoid flutter. In literature, only Nelson and Cunnigham (1956) and Yang (1975) presented results of flutter calculation of
damped panels for conditions of low supersonic speeds. However, they calculated flutter boundaries only for first two
eigenmodes and only for Mach numbers 1.3 and 1.41, which is not enough for comprehensive analysis of damping influence.
Thus the goal of this paper is investigation of the effect of structural damping at low supersonic speeds, where single mode
flutter occurs. We use method and code described in Vedeneev (2012) and present results, first, of inclusion of the structural
damping into the plate model, and, second, of flutter study of clamped plates.
2. Formulation of the problem

We study linear stability of elastic plate in a uniform gas flow in 2-D formulation (Fig. 1). Properties of the plate are
defined by bending stiffness D, its length L, thickness h, and material density ρm; flow parameters are the flow speed u,
speed of sound a, and the flow density ρ. For modelling the plate damping we use the simplest model, with damping
proportional to the first time-derivative of displacement, and proportionality coefficient equal to twice the damping
coefficient G. In-plane plate loads, as well as viscosity of the gas flow are neglected. Corresponding five dimensionless
parameters have the form

D¼ D
a2ρmh

3 ; γ ¼ G
h
a
; L¼ L

h
; M¼ u

a
; μ¼ ρ

ρm
:

Gas flows in the upper half-plane; constant pressure equal to undisturbed flow pressure is set in the lower half-plane
(Fig. 1). Dimensionless equation of the plate motion has the form

D
∂4w
∂x4

þ ∂2w
∂t2

þ 2γ
∂w
∂t

þ pðx; tÞ ¼ 0;

where w is dimensionless plate deflection (non-dimensionalised by h); p is the gas pressure disturbance.
Consider harmonic motion of the plate, wðx; tÞ ¼WðxÞe−iωt , then the plate equation transforms to

D
d4W

dx4
−ðω2 þ 2iγωÞW þ pfW ;ωg ¼ 0: ð1Þ

Due to neglecting viscosity of the flow, its perturbed state is always potential. Potential flow theory (Miles, 1959) yields the
following expression for the pressure disturbance:

pfW ;ωg ¼ μMffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−1

p −iωWðxÞ þM
dWðxÞ
dx

� �
þ μω

ðM2−1Þ3=2
Z x

0
−iωWðξÞ þM

dWðξÞ
dξ

� �

�exp
iMωðx−ξÞ
M2−1

� �
iJ0

−ωðx−ξÞ
M2−1

� �
þMJ1

−ωðx−ξÞ
M2−1

� �� �
dξ: ð2Þ

We will consider plates simply supported at both edges,

W ¼ d2W

dx2
¼ 0; x¼ 0; x¼ L; ð3Þ

or clamped at both edged,

W ¼ dW
dx

¼ 0; x¼ 0; x¼ L: ð4Þ

The problem (1) and (2) with boundary conditions (3) or (4) is the eigenvalue problem for the plate in the gas flow.
Positive imaginary part of any eigenfrequency ωn signifies flutter in the corresponding eigenmode.
M

w(x,t)

Fig. 1. Plate in supersonic gas flow.
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3. Numerical method

Solution method for integro-differential Eq. (1) and (2) has been described and tested in Vedeneev (2012) for the case of
γ ¼ 0. The same method is used in this paper for γ≠0, that is why here we will give just a brief overview. We use Bubnov–
Galerkin method; basic functions are natural modes of the plate in vacuum. Namely,

WðxÞ ¼ ∑
N

n ¼ 1
CnWnðxÞ; WnðxÞ ¼ sin

χnx
L

� �
; χn ¼ πn;

in case of simply supported plate, and

WðxÞ ¼ ∑
N

n ¼ 1
CnWnðxÞ; Wn ¼ 1ffiffiffi

2
p cos

χnx
L

−cosh
χnx
L

−
cos χn−cosh χn
sin χn−sinh χn

sin
χnx
L

−sinh
χnx
L

� ��
;

�

χ1≈4:73; χ2≈7:859; χn≈
πð2nþ 1Þ

2
;n42;

in case of clamped plate. Here Cn are unknown constants. Substitution of this expression into (1), multiplication by Wm(x),
m¼ 1…N, and integration from 0 to L yields a homogeneous system of algebraic equations with unknowns Cn. Basic
functions Wn are normalised such that

Z L

0
WnðxÞWmðxÞ dx¼

L
2
δnm;

therefore the matrix of this system is

AðωÞ ¼Kþ PðωÞ− Lðω2 þ 2iγωÞ
2

I:

Here K is diagonal stiffness matrix with coefficients

kjj ¼D
χj
L

� �4 L
2
; kjn ¼ 0; j≠n;

P is aerodynamic force matrix with coefficients

pjnðωÞ ¼
Z L

0
PfWn;ωg �Wj dx; ð5Þ

and I is the unit matrix. Frequency equation, therefore, takes the form

detAðωÞ ¼ det Kþ PðωÞ− Lðω2 þ 2iγωÞ
2

I
� �

¼ 0: ð6Þ

An iterative procedure used for solving this equation, and convergence study were described in Vedeneev (2012). The only
feature necessary to be mentioned here is that iterations for each n start from the plate eigenfrequency in vacuum

ω0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dχ4n=L

4
q

.

4. Results

Calculations have been conducted for steel plates in air flow at 3000 m above sea level. This corresponds to the following
dimensionless parameters: D¼23.9, μ¼ 12� 10−5. Three other parameters were varied. Five damping coefficients γ were
analysed: 0, 4� 10−5, 8� 10−5, 12� 10−5, 16� 10−5 (reference values will be given below in Section 4.3). For each of these
values stability boundaries (i.e., level lines Im ω¼ 0) for first six modes were calculated and plotted on “Mach number –

plate length” plane.

4.1. Simply supported plates

Results are presented in Fig. 2. First of all, it is seen that damping plays much more important role for single mode than
for coupled mode flutter. This is in agreement with the mechanism of coupled mode instability. Indeed, in the vicinity of
coalescence point of eigenfrequencies the speed of their motion in the complex ω�plane within variation of parameters is
very large; this speed is reduced by damping, but stays large. Therefore, small damping can only slightly shift boundary of
the coupled mode flutter.

On the contrary, influence of damping on single mode flutter boundaries is essential. First, the maximum length Lmax that
the plate can have to avoid single mode flutter at any M increases. Second, region of Mach numbers, where panel of each
certain length flutters, narrows for each mode. Nevertheless, even for sufficiently high damping γ ¼ 16� 10−5 there is still
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Fig. 2. Stability boundaries of simply supported plate in M−L parameter plane for D¼23.9, μ¼ 12� 10−5, γ ¼ 0 (thicker curves), 4� 10−5, 8� 10−5,
12� 10−5, 16� 10−5 of (a) 1st and 2nd modes, (b) 3rd and 4th modes, (c) 5th and 6th modes. Bold curve in plot (a) delimits single mode (SM) and couple
mode (CM) types of flutter.
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a region of plate lengths, where flutter is not suppressed. Especially it is seen for the first mode: maximum plate length, for
which flutter is avoided for any M, is increased by damping from Lmax≈57 at γ ¼ 0 to Lmax≈118 at γ ¼ 16� 10−5, which is still
too small for many applications. For instance, panel of L¼150 length and γ ¼ 16� 10−5 flutters in 1oMo1:15 range.
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Fig. 3. Stability boundaries of clamped plate in M−L parameter plane for D¼23.9, μ¼ 12� 10−5, γ ¼ 0 (thicker curves), 4� 10−5, 8� 10−5, 12� 10−5,
16� 10−5 of (a) 1st and 2nd modes, (b) 3rd and 4th modes, (c) 5th and 6th modes. Bold curve in plot (a) delimits single mode (SM) and couple mode (CM)
types of flutter.
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4.2. Clamped plates

Calculation results for clamped plate are shown in Fig. 3. Both single mode and coupled mode flutter boundaries are
shifted to higher L comparing to the case of simply supported plate. General behaviour of the boundaries with change of γ is
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similar. Lmax is increased by damping more considerably: from Lmax≈115 at γ ¼ 0 to L≈201 at γ ¼ 16� 10−5. Therefore, the
effect of damping is higher for clamped than for simply supported plates.

4.3. Discussion

Let us now consider some examples in order to understand how much the damping is in typical structures. For clamped
metal panel, 0:3� 0:001 m size, the first natural frequency Ω1∼60 Hz. Let the panel Q-factor be 10, and air speed of sound
be 328 m/s (value at 3000 m above sea level), then

G¼ πΩ1

Q
∼19 Hz ⇒ γ ¼ G

h
a
≈5:8� 10−5:

For second and third natural frequencies (167 and 327 Hz, respectively) the dimensionless damping coefficient γ ¼ 16�
10−5 and 31� 10−5.

For higher Q-factors damping coefficients are obviously lower. For example, at Q¼50 we obtain γ ¼ 1:2� 10−5, 3:2� 10−5, and
6:3� 10−5 for the first three natural modes. For panels of, say, L¼200 length this is not enough to suppress flutter in the first and
second modes, but sufficient for suppression of flutter in higher modes.

In the calculations above we considered plates made of steel, which gives μ¼ 12� 10−5. It is important to keep in mind
that single mode flutter growth rate is proportional to μ, except a vicinity of lower branches in Figs. 2 and 3, where it is
proportional to μ2=3 (Vedeneev, 2006). For metals typical for aeronautical applications this means that more damping is
necessary to suppress flutter. For the same flight conditions titanium and aluminium panels yield approximately twice and
quadruple μ, respectively, due to change of the metal density. Consequently, twice and quadruple damping coefficients
are necessary to suppress flutter (that is, two and four times less Q-factors). Even more damping is necessary for higher
flow density at low flight altitude. Such a high damping can be difficult to obtain without special panel dampers or more
complicated ways of flutter suppression, such as considered by Zhou et al. (1995). We therefore conclude that common
opinion that single mode panel flutter is “weak” and can be neglected by designers and mechanical engineers is erroneous.
For conditions of low supersonic speeds it must be taken into account for the design of flutter-free aircraft.

5. Character of apparent plate oscillations

Let us now discuss the spatial oscillations of the plate. It is known that when the flow is transonic, nonlinear limit cycle
oscillations have a significant travelling-wave component (Bendiksen and Davis, 1995). When Mach number is large, limit
cycle oscillations occur in the form of standing waves. In order to analyse transition from travelling to standing wave when
increasing M from linear theory point of view, for each calculated eigenfrequency ωm we calculated the corresponding
eigenmode, namely, amplitudes of basic functions Cn, n¼ 1…N (see Section 3). As the eigenmodes can be arbitrarily scaled,
we normalised amplitudes Cn such that Cm¼1, where m is the number of the eigenmode under consideration. After
rewriting in polar form, Cn ¼ jCnjeiαn , n≠m, it is seen that deviation of αn or βn ¼ αn−π from zero can be used as a measure of
the travelling-wave component.

As an example, consider simply supported plate of length L¼150 and γ ¼ 8� 10−5. Plotted in Fig. 4(a) is the amplitude
and phase shift of the second-mode component of the first eigenmode (m¼1). Amplitudes of higher-mode components
(n42) do not exceed 0.003 and hence are neglected. It is seen that the lower M is, the more amplitude and phase shift the
second-mode component has, which gives travelling-wave behaviour of the eigenmode. For the second eigenmode (m¼2)
amplitudes and phase shifts of the first and third mode components are shown in Fig. 4(b). Though their amplitudes slightly
decrease when M decreases, considerable growth of phase shifts β1 and β3 is clearly seen. Amplitudes of higher mode
components (n43) do not exceed 0.004 and can be neglected.
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Fig. 4. Amplitudes and phase shifts of eigenmode components for L¼150, γ ¼ 8� 10−5: (a) second-mode component of the first eigenmode, (b) first and
third-mode components of the second eigenmode.
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Similar amplification of travelling-wave components of eigenmodes as M-1 is detected for other plate lengths and
damping coefficients. We therefore conclude that travelling-wave behaviour of limit cycle oscillations at transonic speeds is
not only due to nonlinear effects, but is also seen in linear approximation.

6. Conclusions

Calculations of panel flutter boundaries at low supersonic speeds have been conducted with panel damping taken into
account. Two boundary conditions are analysed: panels simply supported at both edges and clamped at both edges. By
considering typical examples it is shown that conviction of some researchers and engineers to ignore single mode flutter as
being “weak” or not able to occur on aircraft is incorrect. Moreover, for sufficiently long panels or light materials special
dampers or other mechanisms of damping are necessary to suppress single mode flutter at low supersonic speeds.

Transition from travelling to standing wave behaviour of the plate when Mach number increases has been analysed. It is
shown that even in linear approximation significant travelling-wave component appears at transonic flow speeds.
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