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a b s t r a c t

In this study we numerically analyse nonlinear flutter oscillations of elastic plate in a gas
flow. In contrast to many other studies, we use inviscid flow model instead of piston
theory or other simplified aerodynamic theories. This study aims to investigate the region
of low supersonic Mach numbers, 1oMo2, where several plate eigenmodes can be
simultaneously unstable, and resulting oscillations are governed by nonlinear interaction
of growing modes. Three types of unstable plate behaviour have been obtained. First, at
0:76oMo1, the plate diverges. Second, at 1oMr1:67, single-mode flutter occurs in
three distinct forms: limit cycle in the first mode (1oMo1:33 and 1:5oMr1:67) or
higher modes; limit cycle in the first and second modes being in internal 1:2 resonance
(1:12oMo1:33 and 1:42oMo1:5); and non-periodic oscillations with several dom-
inating frequencies being in more complex ratio (1:33oMo1:42). Third, at M¼1.82 and
increased dynamic pressure, coupled-mode flutter appears. Amplitudes and spectra of
each limit cycle type are analysed. The role of aerodynamic nonlinearity in the formation
of limit cycle oscillations is discussed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Aeroelastic instability of plates in a gas flow has been investigated in numerous studies in the context of the panel flutter
problem (Movchan, 1957; Bolotin, 1963; Grigolyuk et al., 1965; Dugundji, 1966; Dowell, 1974; Mei et al., 1999). In the case of
subsonic flow, the primary instability type is static divergence, whereas in supersonic flow, instability has an oscillatory
nature, i.e., the plate flutters. Flutter instability, in turn, can be either coupled- or single-mode flutter. The first one occurs
because of coalescence of the plate eigenfrequencies caused by the action of the flow; it has been studied in detail in the
1950s to 1970s using aerodynamic piston theory. The other flutter type, single-mode flutter, occurs at lower Mach numbers,
1oMo2. Recently, detailed investigation of linear single-mode flutter boundaries has been conducted (Vedeneev, 2005,
2012, 2013a); also, this flutter type has been observed in experiments by Vedeneev et al. (2010). The unusual result that has
been obtained is that there is a range of Mach numbers and plate lengths where several plate eigenmodes are
simultaneously unstable. Hence, the development of initial perturbation consisting of those modes and formation of the
limit cycle is governed by nonlinear interaction of the unstable eigenmodes.
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In this study, aeroelastic instability of a plate in an airflow is investigated by direct time-domain numerical simulation.
Plate and gas flowmotions are modelled in solid and fluid codes, respectively, with direct coupling between them. The effect
of the boundary layer over the plate is neglected. The main goal of this study is to investigate the nonlinear development of
growing oscillations in case of several linearly growing eigenmodes.

Several time-domain simulations of nonlinear panel flutter were performed at conditions of transonic and low supersonic speeds by
different authors (Bendiksen and Davis, 1995; Gordnier and Visbal, 2002; Hashimoto et al., 2009; Alder, 2015). Their studies showed
that limit cycle oscillations resulting from single-mode linear growth mechanism occur in the form of travelling wave with dominating
first-mode shape. In the present study, we show that there is a range of Mach numbers where such a limit cycle is not unique, and the
other limit cycle includes two first modes being in 1:2 internal resonance. For higher Mach numbers, where higher eigenmodes
become unstable, high-frequency limit cycles and non-periodic oscillations occur. Such high-frequency oscillations, occurring on an
aircraft panel, yield much faster fatigue damage than the first-mode limit cycle or conventional coupled-mode flutter oscillations.

In contrast to other panel flutter studies, we consider two problem formulations: air flowing over one side of the panel
and over two sides with twice lower air density. When linearising, these formulations become identical, such that the
difference in the nonlinear problem represents the effect of aerodynamic nonlinearity. We show that in all cases, except a
very narrow vicinity ofM¼1, the results obtained from both formulations are similar, i.e., all limit cycle oscillations observed
are caused by structural nonlinearity only, whereas the aerodynamic nonlinearity is negligible.

2. Formulation of the problem

We investigate two-dimensional motion of an elastic plate in a uniform airflow . The air flows over one or two sides of
the plate. In the first case, the pressure underneath the plate equals the free-stream pressure; in the latter case, the flow
parameters along both sides of the plate are equal. The unperturbed state of the plate is flat.

The flow over one side of the plate represents the classical panel flutter model. The two-sided flow is studied to reveal
the role of aerodynamic nonlinearity in limit cycle oscillations, as will be discussed below.

2.1. Plate model

The elastic plate of length Lp¼0.3 m and thickness hp¼0.001 m is clamped at both edges (wðx; tÞ ¼ ∂wðx; tÞ=∂x¼ 0), where
it smoothly passes into a rigid surface (Fig. 1). The plate is made of steel with Young's modulus E¼ 2� 1011 Pa, Poisson's
coefficient ν¼ 0:3, and density ρm ¼ 7800 kg=m3. In dimensionless terms, the plate stiffness and length are

D¼ Dp

a2ρmh
3 ¼ 21:4; L¼ Lp

hp
¼ 300; ð1Þ

where Dp ¼ Eh3=ð12ð1�ν2ÞÞ is the dimensional plate stiffness, and a¼331 m/s is the speed of sound in the air. Similar values
of dimensionless parameters correspond to other metal materials (e.g., aluminium and titanium). The plate is governed by
the nonlinear Mindlin plate model, where elastic strains are calculated through Koiter–Sanders shell theory.

During a short initial time range t ¼ 0…ε, where ε¼ 0:0002 s, a slight disturbing force is applied to the panel to introduce
initial perturbation of the system. At t4ε, no external force is applied to the plate and the flow so that the subsequent
behaviour of the system is governed by the fluid–structure interaction only.
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Fig. 1. Plate in a gas flow: one-sided (a), two-sided (b) flow.
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Fig. 2. Simulation domain: one-sided (a), two-sided (b) flow.
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2.2. Aerodynamic model

The simulation domain of the gas flow is a rectangular 0.6�0.3 m (one-sided flow) or a square 0.6�0.6 m (two-sided
flow), as shown in Fig. 2. We consider inviscid perfect gas with air properties assigned. To deal with more robust numerical
solutions, we assign a small flow viscosity, i.e., the flow is governed by Navier–Stokes equations. In order to neglect any
shear layer occurring in a viscous flow over rigid boundaries, and any turbulence-related issues, we apply a special boundary
condition along the plate surface, that is, instead of the classical no-slip condition, we apply the free-slip condition:

vn ¼ vp; ∂vτ=∂n¼ 0;

where vn and vτ are normal and tangent velocity components of the flow, respectively, and vp is the plate vertical velocity. This way we
avoid the formation of the boundary layer and do not need to excessively refine themesh near the plate. Based on our observations, the
viscosity specified is small enough to not affect the flow and the plate oscillations. Thus, this formulation is equivalent to simulating the
flow of inviscid fluid, whereas the viscosity is needed only for numerical stabilisation and does not influence the solution.

Other boundary conditions for the flow depend on whether flow is subsonic or supersonic. For supersonic flow speeds,
we assign the following conditions:
�
 Inlet: Constant velocity, pressure, and temperature. The same parameters are specified over the simulation domain at t¼0 as initial
conditions. Temperature at inlet is equal to 273 K in all cases studied. Two other flow parameters, namely, flow speed and pressure,
are varied. Hereafter we will use two dimensionless parameters that represent flow condition: Mach number and flow density

M¼ v
a
; μ¼N

ρ
ρm

; ð2Þ

where ρ is the dimensional flow density, and N¼1 and 2 represent the case of one- and two-sided flows, respectively. This
definition of μ provides comparable total unsteady pressure force acting on the plate when one- and two-sided flows are
considered. Given that the temperature is fixed, the Mach number is governed only by the inlet velocity, whereas μ is governed
only by the inlet pressure. Dimensionless dynamic pressure and mass ratio commonly used in panel flutter studies can be
expressed through M and μ as follows:

λn ¼ ρv2L3p
Dp

¼ L3

D
μM2 ¼ 1:26 � 106 � μM2; μn ¼ ρLp

ρmhp
¼ Lμ¼ 300 � μ:
�
 Top, bottom, and aft domain boundaries: The condition of free flow outlet is assigned. The values of the velocity,
pressure, and temperature at the boundary cells are equal to those at the next layer of the cells normal to the boundary.
For the aft boundary, this condition defines the flow parameters at the boundary cells but does not affect the flow inside
the domain because the flow is supersonic. For top and bottom boundaries, this condition provides no reflection of
incident waves so that these boundaries do not affect the plate.

For subsonic flow speeds, another set of boundary conditions is used:
�
 Inlet: Total pressure and temperature of the flow are assigned. As well as for the supersonic case, the temperature is
always equal to 273 K.
�
 Top, bottom, and aft domain boundaries: The flow pressure is specified.

In all subsonic cases, we ensured that the inlet pressure obtained in analysis coincides with the pressure defined at other
boundaries, such that the inlet velocity also takes the desired value. Note that in subsonic case the boundary conditions are not
non-reflecting. However, we ensured that they are located far enough from the plate and do not affect it (see Section 6.1 below).

Let us consider the difference between one-sided and two-sided flows. If the flow equations are linearised, both cases
would be equivalent. Indeed, when the plate bends upwards, the top- and bottom-side flows produce the same unsteady
pressure but with opposite signs. Considering that plate normal directions are also opposite, both flows produce the same
net pressure as a one-sided flow with double density would (that is why N is present in (2)). However, in the nonlinear
problem, these formulations are unequal. When the plate bends upwards, the top-side flow has a shock wave followed by an
expansion fan, whereas the bottom-side flow has an expansion fan followed by a shock wave, which is, clearly, not the same
in nonlinear case. Thus, the difference between one- and two-sided flows is produced only by the aerodynamic nonlinearity.

3. Numerical technique

Analysis is conducted by using two coupled commercial codes. Plate motion is simulated in Abaqus, a finite-element code
originally developed for stress analysis. The flow is simulated in a finite-volume code FlowVision developed by Tesis LTD for
aero/hydrodynamic applications.

Interaction between the codes is organised through direct coupling mechanism along the surface of the deformed plate
(Aksenov et al., 1998, 2008). Both codes are executed in turns; exchanges occur at each time step according to conventional
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serial staggered (CSS) procedure (Fig. 3). The displacements and velocities of the plate points are sent from Abaqus to
FlowVision, whereas the pressure distribution along the plate surface is sent back from FlowVision to Abaqus.

Mesh properties used in the simulation are as follows. The Abaqus plate model consists of hexahedral finite elements, with 60
elements along the chordwise direction. The FlowVision flow model consists of 50�772 (length�height) finite volumes for the
ti-1 ti ti+1

ti-1 ti ti+1

Fi

simulation of 
solid structure 
in Abaqus

simulation of 
gas flow
in FlowVision

wi+1, vi+1

Fi-1

wi, vi

Fi+1

exchange time step i+1=ti+1-ti
Fig. 3. Exchange algorithm between FlowVision and Abaqus.

Fig. 4. Mesh of the flow domain: one-sided (a), two-sided (b) flow.
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Fig. 5. Deflection of the reference point vs. time: stability (M¼0.7, a), divergence (M¼0.9, b), flutter (M¼1.06, c).
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two-sided flow and 50�494 for the one-sided flow (Fig. 4). The vertical size of finite volumes varies from 0.0001m near the plate
to 0.01 m in the far field of the simulation domain. A special mesh convergence study was performed (the results are presented in
the next section), which shows that the mesh is fine enough to obtain an accurate limit cycle solution. When solving the problem
with moving boundary, FlowVision uses a subgrid resolution technique (Aksenov et al., 1998) to capture the plate motion.

Both Abaqus and FlowVision solvers use implicit time integration schemes. The initial time step is 0.0001 s. During the
analysis, the adaptive time step equal for both solvers is calculated through maximum convective (¼10) and surface (¼1)
Courant numbers by the FlowVision solver.

It is convenient to analyse plate behaviour by watching deflection A of a reference point plotted versus time. The
reference point is located at 0.22 m downstream of the leading edge of the elastic plate, which is approximately 3/4 of the
plate length. Fourier analysis is used to calculate the spectra of limit cycles observed.

Three types of the plate behaviour were observed at various flow conditions: stability, divergence, and flutter. In the case
of stability, the perturbed plate oscillates with rapidly decreasing amplitude and returns to the initial position. The reference
point behaviour is plotted in Fig. 5a. In the case of divergence (which was detected only forMo1), the plate is stabilised in a
deflected position (Fig. 5b). In the case of flutter (which was observed only for MZ1), the plate oscillation amplitude
increases and then stabilises at a nonzero value; the plate oscillates in a limit cycle (Fig. 5c).

In most cases, one- and two-sided flows provide the same divergent states or flutter oscillations. The only difference is
seen at transonic speeds, as discussed below. In other cases, the results coincide so that we do not present them separately.
4. Convergence study

To ensure the numerical adequacy of the model, we conducted a series of test simulations under the same physical
parameters and different grid sizes and time steps. We also checked the influence of the disturbing force amplitude in order
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Fig. 6. Reference point deflection obtained on different grids for M¼1.12, μ¼ 1:64 � 10�4 (a); deflection obtained with different time steps for M¼1.06,
μ¼ 1:64 � 10�4 (b).
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Fig. 7. Reference point deflection in time for different perturbation load, M¼1.06, μ¼ 1:64 � 10�4.
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to make sure that the oscillations occur because of fluid–structure interaction and not because of numerical inaccuracies.
Fig. 6a shows the simulation results obtained on different grid sizes of the flow domain. It is seen that the limit cycle is

the same in all cases. A small phase shift occurs because of a slight difference in the transient phase of the oscillation
growth. Given that the limit cycles are almost identical, we conclude that the convergence in grid size is achieved.

Fig. 6b shows the simulations with two time steps. They correspond to Courant numbers (CFL) 2 and 10. The results are
similar, which means that the convergence in time step is also achieved.

Fig. 7 shows the plate oscillations for different amplitudes of the initial disturbance. Despite different initial phases of the
limit cycle formation, caused by different disturbance amplitudes, in both cases the resulting limit cycle is the same. This result
proves that the numerical model is adequate, and the limit cycle oscillations are caused by physical fluid–structure interaction.

The results shown in Figs. 6 and 7 represent the case of relatively small Mach numbers, when the limit cycle is unique.
For higher Mach numbers, when two or more stable limit cycles exist (see below), the results with different time steps and
A×103 (m)
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Fig. 8. Deflection of the reference point (a), oscillation mode shape (b) in case of coupled-mode flutter.
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mesh sizes differ from each other. First, the transient behaviour preceding the limit cycle is different and can be very long,
up to hundreds of resulting limit cycle periods. Second, the established limit cycle can differ because there are more than
one possible limit cycles. We consider this behaviour natural because the transient process is somewhat unstable, and the
only important matter is the final limit cycle. In the case of two limit cycles, we checked that oscillations always fall into one
of them, regardless of the preceding transient behaviour. In the case of high-frequency non-periodic oscillations, we
compared the spectra obtained with different numerical parameters and made sure that they are similar.

5. High Mach numbers: observation of the coupled-mode flutter

We start the survey of the results obtained from the coupled-mode flutter. We set the Mach number M¼1.82 and vary the
dimensionless flow density μ in the range 3 � 10�5rμr5 � 10�4. These parameter values are chosen such that piston theory
is still valid, and according to Movchan (1957), the coupled-mode flutter should occur. The spectrum of the limit cycle should
consist of one frequency located between the first and second natural frequencies of the plate; to make sure that at least two
first modes are excited, the initial perturbation load contained both first- and second-mode shape components.

The following results are obtained. When μ is not too large, the plate oscillates with a small amplitude decreasing in time
(Fig. 8a). The spectrum mostly consists of two frequencies, corresponding to the first two modes. When μ increases, the first
frequency increases, whereas the second decreases, as shown in Fig. 9a. In this figure, the results of the linear eigenfrequency
calculation (Vedeneev, 2013a) are also plotted for comparison; the difference is negligible. At μ¼ μcr, the first and the second
frequencies coalesce so that for μ4μcr only one frequency is detected in the oscillation spectrum. Coalescence is accompanied
by the appearance of a limit cycle, whose amplitude increases with increase of μ (Fig. 9b). The oscillation mode shape is shown
in Fig. 8b. It looks like a mixture of the first and second natural plate modes: it has a node located at approximately 1/4 plate
length from the leading edge, whereas the amplitude of the rear part of the plate is much higher than that of the front part.

The critical dimensionless flow density (i.e., flutter boundary) obtained in our simulation is μcr ¼ 2:39 � 10�4. The theory
based on piston theory (Grigolyuk et al., 1965) provides the following criterion of the coupled-mode flutter:

M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�1

p 4
Dp

a2ρL3p
χcr ¼

D

μL3
χcr : ð3Þ

The value of χcr depends on boundary conditions, for the plate clamped at both edges χcr ¼ 636 (Grigolyuk et al., 1965). The
substitution of M¼1.82 and plate parameters (1) into (3) yields μcr ¼ 2:31 � 10�4. This value is in 3% discrepancy with the
value obtained in this study.

Therefore, we conclude that the coupled-mode flutter boundary is correctly captured by our simulation. The overall
coupled-mode flutter properties, such as coalescence of eigenfrequencies and limit cycle mode shape, are correctly
simulated. This result provides additional verification of the model, and we can now proceed to the results obtained for
lower Mach numbers, which are the primary interest of this work.

6. Subsonic and low supersonic Mach numbers: observation of the panel divergence and single-mode flutter

To analyse the plate behaviour at subsonic, transonic, and low supersonic Mach numbers, we fixed μ¼ 1:64 � 10�4 and
varied M from 0.7 to 2.0. This value of μ is small enough, comparing with μcr from the previous section, to avoid any
coalescence of eigenfrequencies, and, hence, to avoid the coupled-mode flutter.

6.1. Subsonic speeds

For the parameters chosen, the plate is stable for Mr0:76. At M40:76, the perturbed plate is stabilised at a deformed
state so that the deflection of the reference point tends to a constant value as t-1 (Fig. 10a). The shape of the diverged
t (s)

A×103 (m)

0.080.04 0.12
0

0.8

0.4

1.2

reference point

Fig. 10. Reference point deflection in time (a), plate shape (b) at divergence. M¼0.909.
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plate is close to the first natural mode shape (Fig. 10b). With the increase of M, the maximum plate amplitude increases,
whereas the diverged shape slightly changes: the maximum deflected position shifts a little downstream. The Mach number
distribution around the diverged plate is shown in Fig. 11. The figure shows that the flow along all domain boundaries is
undisturbed. This means that even if the boundary conditions are not non-reflecting in the subsonic case, the boundaries are
located far enough from the plate and do not affect the diverged state.

The divergence of the plate at subsonic speeds is consistent with the general plate behaviour studied by Dowell (1974). In
our analysis, there is no difference in the plate shape when the air flows over one or both sides of the plate; in particular,
upwards and downwards divergence amplitudes coincide. This result agrees with the study of Gordnier and Visbal (2002),
who also showed that for essentially larger dynamic pressure than considered here, the downwards divergence amplitude
becomes larger than the upwards divergence amplitude.

6.2. Transonic speeds

Mach numbers M� 1 correspond to a borderline state between divergence and single-mode flutter. Consider the two-
sided flow. The plate oscillates (Fig. 12a), but the dominant frequency, 24 Hz, is less than half the first natural frequency of
Fig. 11. Mach number distribution for the static plate deflection at M¼0.909.
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Fig. 12. Reference point deflection in time (a), instantaneous plate shapes (continuous and dashed curves represent motion down and up, respectively;
bold curves represent the plate shape in delayed positions) (b), spectrum (c) at M¼1.0. One-sided flow (black lines), two-sided flow (grey lines).



Fig. 13. Snapshot of the Mach number distribution for the maximum plate deflection at M¼1.0.
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the plate (Fig. 12c). In contrast to oscillations that occur at higher M, the plate motion is delayed in positions close to
maximum and minimum deflections. Such oscillations can be represented as follows. The plate diverges upwards and stays
in this position for some time. This delay can be considered as local stability of the diverged state of small duration.
However, the aerodynamic pressure at M� 1 can no longer support the plate in the static position, and the plate buckles to
the opposite diverged state. As a result, the oscillations are far from harmonic; in fact, they consist of opposite divergence
states changing each other. Note that in contrast to subsonic divergence, the plate shapes in the delayed positions (shown by
bold curves in Fig. 12b) are not purely first-mode shape, but have a clearly visible second-mode component. The oscillation
mode shape has a form of a travelling wave (Fig. 12b), exactly as predicted by Bendiksen and Davis (1995). The distribution
of Mach number along the flow domain is shown in Fig. 13; a significant change from the case of Mo1 is observed.

For transonic flow, the discrepancy between one- and two-sided flows is clearly visible in Fig. 12. While the oscillations in
the two-sided flow are symmetrical, i.e., bends upwards and downwards are similar, in the one-sided flow the symmetry
disappears: though delays are similar in the downwards bend positions, there is almost no delay in the upper position
(Fig. 12a). As a result, the oscillation frequency is slightly higher in the one-sided flow (34 Hz), but still about half the first
natural frequency. The difference between one- and two-sided flows is explained by different nonlinearities in shock waves
and expansion fans appearing when the plate bends up or down. At slightly larger M, this non-symmetry becomes more
pronounced, as shown in Fig. 14 for M¼1.01.

Note that the time series in Fig. 12a is qualitatively similar to those obtained by Bendiksen and Davis (1995), Gordnier
and Visbal (2002), and Alder (2015). The discrepancy in the amplitude is caused by different flow conditions and plate
lengths used in those studies.
6.3. Supersonic speeds: non-resonant limit cycle oscillations

We now proceed to the case of M41. Note that the smallness of the flow density excludes the possibility of a coupled-
mode flutter. Therefore, all oscillations that will be observed hereunder are caused by the single-mode flutter mechanism
and the nonlinear mode interaction.

With the increase of M, the oscillation frequency rapidly increases, transonic-type delays disappear, so that at M¼1.05,
the limit cycle oscillations become symmetrical, and any discrepancy between one- and two-sided flows disappears.

In the range of Mach numbers 1:05rMr1:12, we observed pure single-mode flutter oscillations (Figs. 15 and 16). The
plate shape is close to the first natural mode shape; the deflections of the plate upwards and downwards are symmetrical to
each other. Oscillations have a certain component of travelling wave moving downstream; however, the higher the Mach
number, the more standing the oscillation. The spectrum of the reference point oscillations consists of two peaks being in
ratio 1:3. The second peak is caused by a cubic nonlinearity of the plate and is not associated with a separate eigenmode.



Fig. 15. Reference point deflection in time (a), plate shape (continuous and dashed curves represent motion down and up, respectively) (b), spectrum (c) at
single-mode flutter. M¼1.06.

Fig. 16. Snapshot of the Mach number distribution for the maximum plate deflection at M¼1.06.

A. Shishaeva et al. / Journal of Fluids and Structures 56 (2015) 205–223214
6.4. Supersonic speeds: resonant limit cycle oscillations

In the range 1:12oMo1:33, the limit cycle oscillations are unsymmetrical (Figs. 17 and 18). During the initial phase of
the oscillation growth, the plate oscillates symmetrically, and the mode shape is the same as in Fig. 15b. Starting from a
moment when the nonsymmetry appears, the growth of the second natural mode is clearly seen in the oscillation shape
(Fig. 17b). Oscillations have a travelling wave component, but in contrast to the case of the non-resonant limit cycle, its
direction is changed from downstream to upstream when the direction of the plate motion is changed from upwards to
downwards. In other words, the plate shape passes the same states when the plate moves upwards and downwards, but in
reverse orders. Compared with the non-resonant limit cycle, one more peak appears in the oscillation spectrum, which is in
1:2 ratio with the frequency of the first peak (Fig. 17c). We conclude that the growth of the second natural mode and
nonsymmetry of oscillations is caused by internal 1:2 resonance between the first and the second modes.

Note that the possibility of a limit cycle that includes internal 1:2 resonance was analytically proved by Vedeneev
(2013b). Its mechanism consists of the following steps, clearly seen in the present simulations:
1.
 Because of linear instability, the first mode starts to grow. Oscillations are symmetrical, as only one mode is present yet.

2.
 As the system is nonlinear, the oscillation frequency also grows, following the amplitude. For the clamped plate, ratio of

the first and second natural frequencies is less than 1/2. While the first mode grows, the ratio of the first to the second
frequency of nonlinear oscillations also grows and at some moment equals 1/2.
3.
 Starting from this moment, the second mode is excited because of internal resonance. The most impressive feature is that
the second mode is still linearly stable (i.e., damped), and its growth is maintained only by the resonance with the first
mode that, in turn, is maintained by the aeroelastic instability.
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Fig. 18. Snapshot of the Mach number distribution for the maximum plate deflection at M¼1.27.

A. Shishaeva et al. / Journal of Fluids and Structures 56 (2015) 205–223 215
4.
 Growth of the first and second modes occurs until the following energy balance is established. The energy transfers from
the flow to the first mode because of the instability of the latter. Next, this energy transfers to the second mode through
nonlinear coupling between two modes. Finally, the same amount of energy transfers from the second mode to the flow
because this mode is linearly damped. When this balance is achieved, the amplitudes of both modes reach their stable
values, and the plate oscillates in a limit cycle.

The key step in the formation of the resonant limit cycle is step 3, when frequencies of nonlinear oscillations in the first and
the second modes are in exact ratio 1:2 (Vedeneev, 2013b). If this moment is somehow passed without exciting the second
mode, the non-resonant limit cycle should continue without any changes. Thus, based on the mechanism described, there should
be coexistence of two limit cycles: resonant and non-resonant. Evasion of step 3 can be organised, for example, by applying an
initial disturbing force that, first, has no second-mode component in the spatial distribution along the plate, and, second, has a
sufficiently high amplitude, such that the initial nonlinear oscillation in the first mode has a frequency that is more than half the
nonlinear frequency of the second mode. In such a case, step 3 will be immediately passed without exciting the second mode.

Let us consider results obtained with such a high-amplitude exciting force. First, for Mach number MoMres, where
Mres � 1:13 is the Mach number at which the resonant limit cycle appears, the increase of the force does not change the
resulting limit cycle because this cycle is unique. The reason is that the stabilisation of the resonant limit cycle amplitude
described in step 4 cannot be achieved for MoMres: the plate energy will flow out to the air (Vedeneev, 2013b). Such a
calculation is shown in Fig. 7 forM¼1.06. Next, forM slightly higher thanMres, both resonant and non-resonant limit cycles are
close to each other, and a very slight disturbance can switch the oscillation from one limit cycle to the other. Fig. 19 shows the
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oscillations of the plate caused by three different exciting forces. The first force, pressure P ¼ 104 Pa, consists of both first and
second spatial mode components. It yields the resonant limit cycle based on the above-mentioned mechanism. The second
force, P ¼ 106 Pa, with exactly the same spatial distribution, yields the same limit cycle, though steps 1–3 in the evolution of
the oscillations are missed: the same limit cycle is achieved from higher amplitude. The third force has the same amplitude,
P ¼ 106 Pa, but different spatial distribution: it mostly consists of the first mode only. Under this load, the plate starts to
oscillate in the non-resonant limit cycle, making at least 16 oscillations. However, after that the limit cycle is switched to the
resonant. This behaviour is explained by the fact that M¼1.15 is very close to Mres, and both limit cycles are close so that their
basins of attraction are also close. Under such conditions, a relatively small disturbance (caused by the flow) of a limit cycle,
which excites the second mode, can switch oscillations from one attractor to the other, which is shown in Fig. 19.

The same calculations conducted for a higher Mach number, M¼1.27, are shown in Fig. 20. The small-amplitude force contains
bothmode components, whereas the high-amplitude force excites only the first mode. At thisM, the difference between resonant and
non-resonant limit cycles is more pronounced, and switching the oscillations from one limit cycle to the other one needs more
significant disturbance applied to the plate. Thus, the perturbation of the first mode caused by the flow, which forced such a switch at
M¼1.15, is not large enough to do this atM¼1.27, and two stable coexisting limit cycles are clearly observed in Fig. 20. The spectra of
both limit cycles are shown in Fig. 21. The spectrum of the non-resonant limit cycle contains only the first-mode frequency and the
triple one; the contribution of other peaks is negligible. The spectrum of the resonant limit cycle also contains a significant doubled
frequency component. Note that the first-mode frequency of the non-resonant limit cycle is slightly higher, whereas the maximum
plate deflection is lower than that of the resonant limit cycle, exactly as was analytically shown by Vedeneev (2013b).

6.5. Supersonic speeds: high-frequency limit cycle oscillations

For the value of Mach number M¼1.33, high-frequency limit cycles were observed (Fig. 22). This case is apparently a
borderline between 1:2 resonant limit cycle and non-periodic oscillations described below. Initially, the development of the 1:2
resonant limit cycle occurs through the above-mentioned scenario (Fig. 22a). However, with time passing, high-frequency
components appear (Fig. 22b). Initially they grow and have quasi-chaotic appearance, but with time they tend to a purely
harmonic limit cycle (Fig. 22c). The shape of the oscillating plate has a mixture of the second and the fourth natural mode shapes.

The latter limit cycle oscillations occur during a long period, t ¼ 1:1…1:6, making more than 200 oscillations. However,
slowly deviations of the amplitude appear, and at t � 1:7 s, the plate motion suddenly switches to another limit cycle
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(Fig. 23a). The latter has higher amplitude and frequency (Fig. 23b), whereas the oscillation shape is a pure second natural
mode shape (i.e., the fourth mode shape disappears). This limit cycle is apparently final for M¼1.33, given that no other
changes of the oscillation shape occur.

High-frequency limit cycles observed for M¼1.33 obviously represent the development of linear instabilities of the
second and the fourth modes found by Vedeneev (2012, 2013a). Such limit cycles were also observed by Bendiksen and
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Davis (1995), Gordnier and Visbal (2002), and Alder (2015) for other flow conditions. Thus, high-frequency oscillations
observed in the present study are in qualitative agreement with preceding works.

6.6. Supersonic speeds: non-periodic high-frequency oscillations

In the range of Mach numbers 1:36rMo1:42, the oscillation process dramatically changes (Fig. 24). Initially the plate
oscillates in the first mode. Thereafter, the second mode appears because of 1:2 resonance, as described above. However,
slowly perturbations in the form of third, fourth, and fifth mode shapes appear. In contrast to the first and second modes,
oscillations in higher modes are not periodic.

Because of the nonlinear mode interaction, oscillations in the first and second modes lose periodicity, and all the process
becomes chaotic-like, without a dominant mode.

However, these oscillations are not ‘fully’ chaotic. Indeed, according to Schuster and Just (2005), there are several criteria
that must be satisfied to consider the process as truly chaotic. These criteria are as follows:
1.
 Chaotic-like overall behaviour.

2.
 Positive maximal Lyapunov exponent.

3.
 Presence of wide-frequency bands in the spectrum.

4.
 Decrease of the autocorrelation function.

5.
 Poincaré section consists of points filling an open set of the space.
Consider these criteria in series. A close-up view of the resulting chaotic-like oscillations is shown in Fig. 25a; no
periodicity of the reference point deflection is detected. Plate shapes captured at different moments of time are shown in
Fig. 25b. There is no apparent regularity of the shapes: they include all mode shapes from the first to the seventh. The video
of the oscillation process clearly shows a non-regular motion of the plate. Also, no periodicity is seen in the flow
perturbation (Fig. 26).

However, additional calculations show that the second, third, and fourth criteria are not satisfied. We introduced a small
perturbation of the plate during developed non-periodic oscillations and calculated the separation speed of the initial and
perturbed trajectories in the phase space. This separation turned out to be linear, which means that the maximal Lyapunov
exponent is not positive.

The spectrum of non-periodic oscillations, as shown in Fig. 25c, is essentially regular. It has several clear peaks, which
means that the oscillations consist of several single-frequency components. However, in contrast to previous cases, their
frequencies are not in a simple ratio. Namely, two dominating frequencies are f 3 ¼ 371 and f 4 ¼ 603 Hz, which is in 8:13
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ratio. This means that either the attractor has a significant 8:13 internal resonance component, or those frequencies are
excited by the flow independently. Although lower peaks, f 1 ¼ 89 and f 2 ¼ 168, have much less amplitude, they are present
and relate to the two dominating peaks at other ratios: f 1: f 3 � 6:25, f 2: f 3 � 5:11. Higher frequency peaks, f 5 ¼ 835,
f 6 ¼ 1117, f 7 ¼ 1340, f 8 ¼ 1573, and f 9 ¼ 1863 Hz, are the derivatives of the dominating ones caused be the cubic
nonlinearity of the plate: f 5 ¼ 2f 4� f 3, f 6 ¼ 3f 3, f 7 ¼ 2f 3þ f 4, f 8 ¼ 2f 4þ f 3, and f 9 ¼ 5f 3.

The autocorrelation function calculated for the developed non-periodic oscillations regime turned out to be periodic, not
decreasing function so that the oscillations cannot be considered as truly chaotic.

On the other hand, the last criterion is satisfied, i.e., the Poincaré section fills a full segment. This means that the attractor
is not a ‘pure’ limit cycle, as could be thought from the Lyapunov exponent, spectral, and autocorrelation function criteria.
But it is also not fully chaotic and is probably somewhat similar to irrational winding of a torus, which is a regular but non-
periodic path on a torus, whose Poincaré section fills an open set.

As in the case of 1:2 resonant limit cycle, the change of the disturbing force can change the resulting oscillations. In that
case, only two limit cycles were possible, and the switch from one to the other required significant change of disturbing
force amplitude and spatial distribution. At higher M, when more modes are linearly growing, many more attractors can
coexist, including limit cycles with higher internal resonances. In our calculations with different disturbing forces (either in
amplitude or in spatial distribution) or slightly different flow speeds, we observed different non-periodic oscillations. They
have similar displacement amplitudes of 2…3 plate thicknesses, but the spectra include additional frequency components
that represent additional higher modes visible in instantaneous plate shapes.

6.7. Return to regularity and stability

When the Mach number is further increased, chaotic-like oscillations disappear. Surprisingly, in the range 1:42rMr1:67,
oscillations again occur in the form of a limit cycle. ForM¼1.42, it consists of two frequencies, 366 and 609 Hz, being in the 3:5
ratio, and the oscillations are purely periodic. For M¼1.44 and 1.45, the limit cycle consists of two first natural modes; for
higher M, it has the first natural mode only. For the latter case, the typical reference point deflection, plate shape, and
spectrum are similar to those shown in Fig. 15. In other words, starting from M¼1.42, attractors of the plate motion pass the
same stages as before chaotic-like oscillations, but in the reverse order. When the Mach number increases, the limit cycle
amplitude decreases and becomes almost zero for M41:67, which means return to stability of the flat state of the plate. This
stability is maintained for higher M until the coupled-mode flutter occurs. For the dimensionless flow density μ¼ 1:64 � 10�4

considered in this study, the coupled-mode flutter, according to (3), occurs for M4Mcr ¼ 2:92.

6.8. Phase portraits

Consider phase portraits generated by motion of the reference point at different Mach numbers. For Mo1:33, when the
attractor is a limit cycle, the phase portraits are shown in Fig. 27. AtM¼1 (Fig. 27a), when the limit cycle in fact consists of two
diverged states changing each other, its shape in the phase space is condensed in the vertical direction. For higherM, while the
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non-resonant limit cycle remains the only limit cycle (Fig. 27b–d), the limit cycle spreads in both horizontal and vertical
directions, staying symmetric around the point ð0;0Þ. Note that the limit cycles are not elliptic (and, generally, not a Lissajous
figure) because of triple-frequency harmonic present in the spectrum. For higher M (Fig. 27e–f), the resonant limit cycle
appears, coexisting with the non-resonant one (not shown). The limit cycle becomes non-symmetric and spreads more
significantly, especially along the vertical direction. The reason of this spread is the appearance of the second mode, whose
doubled frequency yields increase of the plate velocities. During the initial evolution of the trajectory in Fig. 27e, the
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appearance of the non-resonant limit cycle is observed. However, the growing resonating second mode yields the switch of
the oscillations to the resonant limit cycle (Fig. 19).

The phase portrait of non-periodic oscillation at M¼1.39 is shown in Fig. 28. The initial phase of the trajectory evolution
is shown by the black curve; oscillations along the single-mode limit cycle are clearly observed during this phase. The
second phase, development of non-periodic oscillations, is shown by the grey curve. The trajectory essentially spreads along
the vertical direction because of the appearance of higher modes with higher frequencies, which yields increase of the plate
velocities. It is seen that the trajectory does not follow any one-dimensional attractor.

6.9. Flutter amplitude

Fig. 29a shows the oscillation amplitudes (namely, amplitudes of the reference point). When the plate diverges, starting
from M� 0:76, an increase of Mach number yields increase of the divergence amplitude. When passing through M¼1,
instability converts from divergence to flutter, which is accompanied by a slight drop of the amplitude. Next, when single-
mode flutter occurs, the amplitude increases with increase of M even more rapidly than at divergence. Passing through the
region of flutter with internal resonance yields split of the amplitude graph: plate oscillations are non-symmetric so that
upper and lower graphs represent higher and lower amplitudes. For the same Mach numbers, single-mode limit cycle also
exists, which means coexistence of two limit cycles. At M� 1:3, the maximum of amplitude is achieved: A� 0:0039 m.
Further increase of Mach number is accompanied by the decrease of the amplitude, and by passing regions of high-
frequency periodic and non-periodic oscillations. Beyond the latter, oscillation types are passed in the reversed order: high-
frequency periodic oscillations, 1:2 resonant limit cycle, and first-mode limit cycle. The plate then returns to the stable state.

The important consequence from Fig. 29a is that the typical single-mode flutter amplitude is several times higher than
that of the coupled-mode flutter (Fig. 9). This means that the single-mode flutter can cause fatigue damage much faster, and
hence, it is more dangerous. The region of non-periodic oscillations is especially dangerous: even if the deflection amplitude
is of the same order as for the first-mode limit cycle, the plate shape consists of higher natural mode shapes so that the
stress amplitude is much higher than that of the first-mode limit cycle. On the other hand, higher modes have higher
damping, which is an efficient way for single-mode flutter suppression, and the higher modes are likely to be totally
damped. However, for long plates, natural structural damping is not always sufficient to overcome the linear growth
(Vedeneev, 2013a) so that additional dampers may be necessary for the guaranteed flutter suppression.

Higher limit cycle amplitude atM¼ 1:1…1:4 than at largerM agrees with the results of Dowell (1974, p. 42) and Gordnier
and Visbal (2002) obtained for different flow conditions.

The closed-form solution for the single-mode flutter amplitude (Vedeneev, 2007, 2013b) plotted in Fig. 29 shows the
qualitative agreement between the numerical and analytical results. Two quantitative differences are observed: first, the
oscillations occur at lower M, and second, their amplitude increases slower than the theory of Vedeneev (2013b) predicts.
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The first difference is caused by the fact that in this study flutter occurs immediately at MZ1, whereas analytical theory
(Vedeneev, 2013b) is not applicable to transonic flows and assumes that flutter occurs at a slightly higher M. The second
difference is caused by different plate models (von Karman vs Mindlin plate theory), which yield different plate behaviours
at amplitudes of the order of several plate thicknesses.

Fig. 29b shows the dominating frequencies of spectral peaks (except the triple frequency of the first one: it is caused by
cubic plate nonlinearity and is not associated with a separate eigenmode). It is seen that the frequency growth in single-mode
flutter region is almost linear. The frequency of the non-resonant limit cycle obtained in a closed form by Vedeneev (2013b),
plotted in Fig. 29b, is qualitatively close to that obtained in the present study. When 1:2 internal resonance occurs, frequency
growth slows down. After passing through the high-frequency and chaotic regions, the frequency and the amplitude decrease.

6.10. Role of aerodynamic nonlinearity

Comparison of flutter amplitudes and spectra for one- and two-sided flows in Fig. 29 shows acceptable quantitative
agreement, except the narrow vicinity of M¼1. The only difference between these models is the aerodynamic nonlinearity.
The coincidence of results suggests that this nonlinearity actually plays no role, and the only mechanisms governing limit
cycle oscillations are the linear aerodynamics generating eigenmode growth and the structural nonlinearity governing the
interaction between the eigenmodes and forming a limit cycle.

Another argument against the aerodynamic nonlinearity is the qualitative agreement with the analytical theory of
Vedeneev (2007, 2013b), where linear aerodynamics was used. In that study, the physical mechanisms of both non-resonant
and resonant limit cycles were revealed, and the amplitude and frequency of single-mode limit cycle obtained in the present
study, in general, fall within that prediction. Although the starting point of the non-resonant limit cycle is different (which is
caused by aerodynamic nonlinearity at transonic flow), the appearance of the resonant limit cycle agrees well: Mres � 1:13 in
this study versus M¼1.14 in the theory of Vedeneev (2013b). High-frequency limit cycles are explained, again, by the linear
growth of higher eigenmodes (Vedeneev, 2012, 2013a). Non-periodic high-frequency oscillations are the only plate behaviour
not fully understood at this point. However, there is a small chance that the aerodynamic nonlinearity plays any role there.
It seems more likely that multiple linearly growing eigenmodes compete with each other during the nonlinear growth phase,
and no one can win and form the limit cycle because of very narrow basins of attraction, or just instability of their limit cycles.

Thus, we suggest that the complex plate dynamics observed in this study and partially by Bendiksen and Davis (1995),
Gordnier and Visbal (2002), and Alder (2015) is caused by linear aerodynamics and structural nonlinearity so that aerodynamic
nonlinearity is negligible at all flow conditions, except the transonic flow. This agrees with Gordnier and Visbal (2002) and
Alder (2015) who reported insignificant discrepancy for M¼1.2 between their Euler computations and potential flow (i.e.,
linearised Euler) study of Dowell (1974) both in flutter boundary and limit cycle amplitude. On the other hand, atM¼1.41 they
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observed a discrepancy with potential flow results, which was explained by the aerodynamic nonlinearity (Gordnier and
Visbal, 2002). We note that the frequency of their limit cycle atM¼1.41 is 3…5 times higher than atM¼1.2 so that we suppose
that atM¼1.41 they observed a higher-mode limit cycle. Dowell (1974) has not reported any evidence of high-frequency limit
cycles, that is why we suggest that the discrepancy between Euler and potential flow computations at M¼1.41 is because of
different limit cycles observed but not because of the aerodynamic nonlinearity.

Note that the flow conditions investigated in this study assume the dynamic pressure 200oλno520. It is possible that
higher dynamic pressures yield more significant role of the aerodynamic nonlinearity, such as non-symmetric positive and
negative divergence displacements obtained by Gordnier and Visbal (2002) and Alder (2015) for M¼0.95, λn4800.

7. Conclusions

Nonlinear development of divergence, single-mode, and coupled-mode flutter oscillations of a plate has been numerically
studied. Amplitudes and frequencies of flutter oscillations have been obtained. In the case of high Mach numbers, excellent
correlation with classical results based on piston theory has been achieved. In the case of low supersonic flow, four types of
flutter oscillations have been observed: first-mode limit cycle, limit cycle that includes internal 1:2 resonance between the first
and the second modes, high-frequency periodic oscillations, and high-frequency non-periodic plate oscillations.

While the first- and higher-mode limit cycles were observed in previous studies (Bendiksen and Davis, 1995; Gordnier
and Visbal, 2002), flutter oscillations with internal resonance and non-periodic high-frequency oscillations are new findings
in the present work. The results show that non-resonant and resonant limit cycles can coexist so that the final limit cycle
depends on the initial perturbation, which is consistent with the theoretical study of Vedeneev (2013b). For sufficiently
small flow density, there is a gap of Mach numbers between single-mode (1oMo1:67) and coupled-mode (large M) flutter
regions, where the plate is stable.

Comparison of flutter oscillations for the case of one- and two-sided flows suggests that in all cases, except the transonic
flow, aerodynamic nonlinearity is insignificant so that flutter oscillations are driven by linear growth mechanism and
structural nonlinearity of the plate.

The results show that the amplitude of flutter oscillations at low supersonic Mach numbers is typically several times higher
than that of the coupled-mode flutter, as was predicted by Vedeneev (2013b). Maximum stress amplitude is achieved at high-
frequency oscillations and can be much higher than for other flutter types, which is caused by higher mode shapes dominating
in the shape of the plate oscillations. This means that from the safety point of view, the single-mode panel flutter at low
supersonic speeds can be much more dangerous than the classical coupled-mode flutter that occurs at higher speeds.
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