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Blade flutter of modern gas-turbine engines is one of the main issues that engine designers have to face. The most

used numerical method that is employed for flutter prediction is the energy method. Although a lot of papers are

devoted to the analysis of different blade wheels, this method was rarely validated by experiments. Typical mesh size,

time step, and various modeling approaches that guarantee reliable flutter prediction are not commonly known,

whereas some examples show that predictions obtained through nonvalidated codes can be inaccurate. In this paper,

we describe our implementation of the energy method. Analysis of convergence and sensitivity to various modeling

abstractions are carefully investigated. Numerical results are verified by compressor and full engine flutter test data.

It is shown that the prediction of flutter onset is rather reliable so that themodeling approaches presented in this paper

can be used by other researchers for the flutter analysis of industrial compressor blades.

Nomenclature

f = natural frequency
m = number of nodal diameters
N = number of blades
n = rotor speed
W = work done by the unsteady pressure over one

cycle of blade oscillation
α = inlet angle of attack
φ = 2π m∕N, interblade phase shift
ω = 2πf, circular frequency

I. Introduction

A IRCRAFT gas-turbine engine designers were faced with
compressor blade flutter in themiddle of the 1950s while devel-

oping the second generation of jet engines. At the present day, a huge
theoretical and practical experience has been accumulated. Typically,
regions of the various flutter types are plotted on the compressor
operating map. Theywere developed by different researchers and are
very similar [1–5]. The scheme in Fig. 1 proposed in [2] can be
considered as a typical example. Thismap clearly shows that possible
flutter regions are mainly located near the surge line or significantly
lower than the compressor operating line. When operating in these
regions, the airflow in the blade passages is unsteady, including
unsteady recirculation zones and possibly shocks. The only excep-
tions are the regions bounded by lines 3, 4, and 6. They lead to the
blade flutter near the operating line for unstalled flow. Recently, it
was demonstrated [6] that the region bounded by line 2 can also be
located near the operating line, and the flow can be continuous.
The problem of numerical flutter prediction for the compressor or

fan blade wheels is associated with the coupled aeroelastic problem,
which first needs a solution for a steady-state flow in blade passages.
Modern computational codes, such as Ansys CFX, Star-CCM,
Fluent, FlowVision, etc., provide reliable airflow parameters in blade
passages near the operating line, where the flow is unstalled. For
surge line (region 1) and for stalled flow (regions 2, 5, and 7), it is very

difficult (and usually impossible) to determine reliable airflow pa-
rameters numerically, which is why the numerical prediction of blade
flutter boundaries for these regions usually cannot give any valid
results. However, for the design phase of modern gas-turbine engine
compressors and fans, themost important is to suppress flutter around
the operating line with required safety margins because this provides
the ability for test validation of the main characteristics of the new
compressors. The dynamic stress state of compressor or fan blades
operating near the surge line and in regions of stalled flow is typically
determined experimentally during the refinement of the engine.
Basically, there are four methods for flutter prediction [3,4]. The

first (direct) method is based on the direct time-domain numerical
simulation of a coupled blade-flow system. This method not only
provides flutter regimes but also gives limit cycle amplitude if flutter
occurs [7]. However, numerical difficulties of this approach and the
necessity of a great amount of computational resources and time are
themain limitations of thewide applications of thismethod.Also, it is
not easy to understand the physical nature of vibration amplification
and adequately redesign the blade if flutter occurs.
The second (frequency or modal) method is based on the cal-

culation of the eigenfrequencies of a coupled fluid–structure system.
Generally, the eigenfrequencies of such system are complex because
the system is not conservative. The positive imaginary part of the
eigenfrequency is a criterion for flutter. This method is rather com-
mon and can be applied to the flutter prediction of any aeroelastic
structure. However, there are mathematical issues with finding the
eigenvalues of complex nonsymmetric matrices [8]; also, computa-
tional resources comparable with the first method are necessary.
The third (energy) method is based on the calculation of the work

done by the gas forces on the displacements of the elastic blade
oscillating in a natural mode over one cycle of oscillation. This
method provides acceptable results if the natural mode shapes in
vacuum and in flow are similar, which is almost always true, except
for hollow blades. If the work is positive and greater than thework of
damping forces, then flutter occurs. The advantage of this approach is
that the analysis is relatively quick; only modal analysis should be
conducted for elastic blades, whereas the calculation of the work is a
purely aerodynamic problem. The problem is uncoupled, and time
savings are significant.
The fourth method of flutter prediction is the most used by gas-

turbine engineers and is based on the results of the analysis and
synthesis of practical experience of flutter occurrence in the com-
pressor and fan blades of real gas-turbine engines after their
refinement and in service. To formulate a criterion of flutter initiation,
both deterministic and probabilistic methods are used. Such criteria
are mainly one- or two-parametrical, though there are criteria with
many more parameters [9,10]. For each type of flutter, the system of
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parameters is supplemented with limit values, established from the
study and generalization of flutter onset conditions in compressors-
prototypes. These limits bound a possible flutter zone. One of the
simplest criteria is the reduced frequency (Strouhal number)
Sh � ωb∕V, whereb is the blade chord of peripheral cross section,ω
is the circular blade frequency, and V is the flow speed. Shrinivasan
reported [4] that, for guaranteed flutter suppression in bendingmode,
Shmust begreater than 0.8; for torsionalmode, itmust be greater than
1.4. The wide application of this method by gas-turbine engine
engineers is reasonable because it provides the ability to use huge
experience that has been accumulated from engine prototypes.On the
other hand, such criteria should be used very carefully by engineers
from other companies because they can give an unrealistic prediction
for different compressor designs and operating parameters.
Because the fourth method is not applicable to essentially new

blade designs, a great effort has been made over decades to develop
numerical codes for predicting flutter using the first three methods.
We will give a very brief overview of such codes; the most compre-
hensive reviews on computational aeroelasticity in turbomachinery
can be found in [3,11].
Many of the numerical codes are two-dimensional, including those

based on the energy and modal methods [12–17]. As a rule, in such
studies, a two-dimensional (2-D) cross section at 80–100% of the
blade span is modeled, which implies that this cross section governs
the overall stability of the blade. This approach is reasonable for
theoretical investigations of general effects, such as the effect of
the mode shape, interphase blade angle, cascade mistuning, etc.
However, for real compressor or turbine blades, which are essentially
three-dimensional (3-D), there are usually no arguments to choose a
particular cross section. Moreover, in Sec. IV.E, we will give an
example of a blade whose overall stability prediction does not co-
incide with the prediction obtained through the 2-D cross section
taken at 90%of the blade span.At the present day, the 2-D approach is
verified by tests of cylindrical blades (i.e., blades whose cross section
is constant along the span) [18–24]. A study [25] is devoted to the
comparison of energy and modal methods based on a quasi-3-D
approach. It is shown that, for sufficiently stiff metal blades, the
energymethod gives results very close to those obtained by themodal
method, but for a more flexible composite blades, the inaccuracy of
the energymethod, caused by the difference of themode shapes in the
flow and in vacuum, is more pronounced.
Starting from a series of papers [26–29] as well as [30,31], several

3-D aeroelastic codes have been developed by different researchers
during the last decade [32–37]. Most of them are based on the energy
method, though there are some employing time-domain and
eigenfrequency calculations. However,many of the 3-D codes are not
carefully validated by experiments, and some are not verified at all.
The most impressive evidence of uncertainty of unvalidated codes is
the comparison of aerodynamic damping calculations for the same
test object conducted by five different partners of the FUTURE
project [38]: the spread of predictions is of 100% of the damping
magnitude; two of the five calculations predict flutter, whereas three

predict stability. As the authors of [38] note, “On the background that
all these partners are known experts in aircraft engine components,
these results underline the uncertainty presently associated with
flutter predictions”.
In the open literature, only a few papers are devoted to the

comparison of numerical and test data for 3-D blades [39–42]. All the
authors of those papers compare calculated and measured aero-
dynamic damping (i.e., in fact, they validate aeroelastic codes based
on the energy method). Although a good correlation is obtained, the
aforementioned note [38] should not be ignored: a significant dif-
ference between the predictions shows that validations of numerical
codes by experiments must be conducted, and reliable parameters of
the numerical schemes used should be elaborated during such
validations.
In this paper, we implement the energymethod in 3-D formulation

for blade flutter analysis, which uses unsteady aerodynamics from the
industry-recognized code Ansys CFX. We investigate the influence
ofmodeling different features: number of blades simulated,modeling
of the blade shroud, and effects of manufacturing tolerances,
expressed in the distortion of the blade mode shapes, tension in the
blade shroud, and the inlet angle of attack. Results are validated by
test results obtained for two blade wheels. Each wheel is tested and
numerically analyzed at two regimes, one of which is stable and the
other is the flutter regime. Numerical parameters used in calculations
and the influence of various modeling features validated in this paper
can be used by other investigators for reliable predictions of the
flutter onset.
The structure of the paper is as follows. First, in Sec. II, we describe

in detail the energy method and formulate a step-by-step algorithm.
Section III is devoted to a convergence study. In Sec. IV, we
numerically analyze two blade wheels. Finally, in Sec. V, we present
results of an experimental study of the wheels analyzed, which
validate the method developed.

II. Method of Flutter Prediction

We assume that the influence of the flow on natural blade modes
and frequencies is negligible. This assumption is valid for the case of
sufficiently stiff blades, when flow disturbances excited by small
blade vibration have no significant action on blade eigenmodes.
Therefore, the airflow can result only in small additional damping
(for stability case) or additional energy inflow (for flutter case)
without change of natural modes and frequencies. The energy equa-
tion for a blade in a coordinate system rotating with the wheel is

dE�t�
dt
� A�t� (1)

where E�t� is the total energy, and A�t� is the power of internal and
external forces. Neglecting structural damping and viscous forces of
the flow, we assume that the only force is the air pressure distributed
along the blade surface. Then the change of the total energy over the
cycle of oscillation is

ΔE � W �
Zt0�T

t0

Z

S

p�x; y; z; t�n�x; y; z; t�v�x; y; z; t� ds dt (2)

where T � 1∕f is the blade oscillation period (f is the natural
frequency),S is the blade surface,p is the flowpressure,n is the blade
surface normal, and v is the velocity of the blade points.
Since the flow influence on the blade oscillations is small, thework

W done over actual (growing or damped) oscillation is also small.
The work over harmonic (i.e., constant amplitude) oscillation is
different from the actual work by a second-order infinitesimal
term, which is neglected. Harmonic oscillation shape is assumed to
be obtained from the modal analysis of the blade in vacuum using
standard engineering software.
Thus, we calculate the work done by pressure over specified

oscillations of the blade during one oscillation period. The following
inequality is a criterion of flutter:

corrected weight flow

oitar erusserp 

1

2
3

4

5

8

6

7
50%

75% 100%

Fig. 1 Compressor map [2]: 1) surge line, 2) subsonic stalled flutter,
3) bending–torsional flutter, 4) supersonic unstalled flutter induced by
shocks, 5) supersonic stalled flutter, 6) supersonic unstalled flutter,
7) choking flutter, and 8) operating line.

1282 VEDENEEV, KOLOTNIKOV, AND MAKAROV

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
M

B
R

ID
G

E
 o

n 
A

ug
us

t 2
1,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.B

35
41

9 



W > 0 (3)

The finite-volume model of the flow consists of three or five
consecutive blade passages of one stage (Figs. 2a and 2b). For
unsteady fluid flow analysis, initial and boundary conditions are
extracted from steady-state flow calculated for the full compressor
(where all stages are modeled), verified by full-scale compressor
tests. Namely, we specify the distribution of the total pressure, total
temperature, velocity, and turbulence parameters at the inlet (Fig. 2c)
and distribution of static pressure at the outlet. A no-slip condition is
assigned at solid body surfaces: hub, blades, and casing; for the latter
surface, the no-slip condition is applied in the counterrotating co-
ordinate system. The condition of rotational periodicity connects
flow parameters at sides 1 and 2 (Fig. 2c). Note that latter boundary
condition (the only available in the aerodynamic code used) distorts
the traveling wave in the flow, so that it is necessary to model several
consecutive blade passages and calculate the work done over the
middle blade, which is the most remote from sides 1 and 2. For codes
where the phase lag between sides 1 and 2 can be taken into account,
one passage is enough for the modeling the traveling wave.
Mesh displacement in the form of the wheel natural mode with a

specified number of nodal diameters is applied to each blade surface:
u�x; y; z; t� � A sin ωt × Ln�x; z�, where A and ω � 2πf are the
blade oscillation amplitude and circular frequency, and Ln�x; z� is a
function representing the mode shape. We use the 10th-order
Lagrange interpolation polynomial for interpolating finite-element
mode shape results and transferring them to the computational-fluid-
dynamics code.
For modeling a forward (or backward) traveling wave, which is

typical for compressor blade flutter [43], phase lag sin �ωt − φ� and
lead sin �ωt� φ� with respect to the middle blade are specified for
neighboring blades, where the phase shift φ � 2π m∕N corresponds
to the number of nodal diameters m. In the case of the five-blade
model, the phase shift for the side blades is�2φ.
Let us prove that with these assumptions thework done by a steady

component of pressure over one cycle of harmonic oscillation is zero.
Indeed, the work associated with the steady pressure can be nonzero
only if there is a phase shift between different blade points (i.e.,
eigenmodes are complex) [44]. However, we assume that each blade
oscillates in the form of a standing wave, such that there is no phase
shift between points of the same blade (though the phase shift
between different blades is nonzero); hence, the eigenmodes are real.
In this case, the work done by the steady pressure is zero. Therefore,
wewill assume that the pressurep in Eq. (2) is the unsteady portion of
the pressure caused by blade oscillation.
In accordance with the procedure described, flutter analysis

consists of four stages: 1) modal analysis of elastic blades,
interpolation of mode shapes by Lagrange polynomials; 2) steady-
state flow analysis in compressor; 3) unsteady flow analysis of a
certain compressor stage with blades oscillating (i.e., fluid mesh
moving) in a specifiedmode obtained in step 1; and 4) the calculation

of work [Eq. (2)] done by pressure for the middle blade and check of
criterion (3).
Steps 3 and 4 are executed for each natural mode potentially

sensitive to flutter.Work is calculated for the last of several simulated
cycles of oscillations, such that the flow response to the blade os-
cillations is pure harmonic. Calculations show that three periods are
typically enough to have a harmonic response (see Sec. III).
A structural modal analysis is performed using the Ansys

Mechanical finite-element software. For fluid flow analysis, we
use Ansys CFX, version 12.1. Reynolds-averaged Navier–Stokes
(RANS) equations with k − ε turbulence model are solved. For poly-
nomial interpolation and calculation of work done by unsteady
pressure, special in-house codes have been developed.
Flutter onset predictions and test data presented in this paper are

obtained for two wheel models representing two stages of the same
compressor (Table 1, index “0.5” means the middle of the blade
span). Each wheel is analyzed in two configurations:
1)Wheel 1with shrouded andwith cantilever blades (Fig. 3a). The

cantilever bladewheel is a special test wheelwith blade shrouds cut to
be out of contact with other blade shrouds. This wheel represents
wear of material in contact pairs of the shroud. A fixed rotation speed
specific for the throttle regime (compressor operating near region 3 in
Fig. 1) is studied. Airflow parameters correspond to zero altitude and
zero Mach number at the engine inlet. The flow at the stage inlet is
transonic, with average Mach number M ≈ 0.9 and 0.95 at 50 and
90%of the blade span, respectively. The flow at the blade passage has
a certain supersonic region (Fig. 4).
2) Wheel 2 with shrouded blades (Fig. 3b). Rotor speeds n �

159.5 and 170 Hz are analyzed. In the first case, the average Mach
number at the stage inlet is subsonic, M ≈ 0.7 and 0.9 at 50 and
90% of the blade span, respectively; in the second case, the flow is
supersonic: M ≈ 1.2 and 1.4. The flow in the interblade passage is
fully subsonic in the first case and has a significant supersonic portion
in the second case (Fig. 5). Because of the closeness of the physical
rotation speeds, we assume that the blade natural modes and fre-
quencies are the same and consider only the difference in the aero-
dynamics.
During the investigation of wheel 1, we studied numerical con-

vergence and implementation features (number of blades in the
model, oscillation amplitude, etc); results are compared with test
data. During the analysis of wheel 2, we studied structural effects:

inlet

outlet

hub

casing

side 1

side 2

a) b) c)
Fig. 2 Models of consecutive blade passages: a) three, b) five; and c) boundary conditions.

Table 1 Parameters of the wheels and regimes
considered

Parameter Wheel 1 Wheel 2

Number of blades (N) 45 37
Rotor speed n, Hz 136.0 159.5∕170.0
Inner to outer diameter ratio d∕D 0.570 0.435
Relative blade spacing t0.5∕b0.5 0.800 0.766
Blade aspect ratio h∕b0.5 3.120 3.554
Midspan shroud location hs∕h 0.710∕�n∕a� 0.772
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assembling force between contact surfaces of midspan shroud,
deviation of the blade mode shape due to manufacturing tolerances,
and inlet flow incidence angle.
To make sure that the steady aerodynamics, which is the basis for

flutter analysis, is correctly obtained, let us consider the operating
map of the compressor (Fig. 6), where the results of the numerical
analysis and experimental points are shown. It is seen that the
agreement between steady flow calculations and experiments is
rather good. Thus, we consider the steady flow as correctly rep-
resenting real airflow and can use it for unsteady flow analysis due to
blade oscillations.

III. Analysis of Convergence and Numerical Effects

The three-blade model of wheel 1 was used for the analysis of
convergence and the effect of numerical parameters. We calculated
thework done by unsteady pressure over a cycle of oscillations in the
first mode for m � 0 (all blades oscillate with the same phase).
The following parameters were selected as “basic” for the analysis.

Single precision was used (all variables are of float type). Time step
wasΔt � T∕100. Three periods were analyzed; workwas calculated
for the last period (i.e., for time steps 200 : : : 300). The rms con-

vergence residual for RANS equations was set to be 5 · 10−5 for each
time step (maximum residual turns out to be ∼10−3). The number of
internal iterations at each time step was higher than 10 and less than
100. The mesh consisted of approximately 200,000 control volumes
per one blade passage (Fig. 7). Work calculated for the first natural
mode is denoted by “1” in Fig. 8. For the investigation of

Fig. 3 Blades of a) wheel 1, and b) wheel 2.

Fig. 4 Mach-number distribution at wheel 1. Distributions at a) 50%,
and b) 90% of the blade span are shown.

Fig. 5 Mach-number distribution at wheel 2 at regimes a–b) n � 159.5,
and c–d) n � 170 Hz. Distributions at 50% (a,c) and 90% (b,d) of the

blade span are shown.
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0.5 0.6 0.7 0.8 0.9 1.0 

surge line 
operating line 

experiment 
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relative mass flow 

wheel 1 
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Fig. 6 Operating map of the compressor. Flow regimes corresponding
to the analysis of wheels 1 and 2 are shown by black squares and gray
triangles, respectively.
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convergence,we calculated the sameworkwith one of the parameters
takenwith higher precision.At each run, overall convergence criteria,
such as integral conservation laws, were checked.
1) Precision of unsteady aerodynamic problem solution; cal-

culationswere conductedwith double precision (all variables were of
double type). Result is denoted by “2” in Fig. 8.
2) Convergence in time step; calculation with four-times-reduced

time step, Δt � T∕400, was conducted. Total simulation time (three

periods) consisted of 1200 time steps. Result is denoted by “3”
in Fig. 8.
3) Convergence in residuals; this case was checked together

with the time step reduction. Result shown in Fig. 8, point “4”, was
obtained at a two-times-smaller time step (600 iterations for the full
run time) and maximal residual of 10−4 (rms residual of ∼10−6).
4) Number of oscillation periods; to check the sufficiency of three

periods for harmonicity of the flow at the last period, additional
analysis was conductedwith threemore periods simulated.Workwas
calculated at the sixth period; result is denoted by “5” in Fig. 8.
5) Convergence in mesh; calculations were conducted using

refined meshes of 430,000 and 800,000 control volumes per each
blade passage. Results are shown in Fig. 8 as “6” and “7”.
It is seen in Fig. 8 that the work done by pressure during the last

oscillation period is changed insignificantly in all cases, except for a
slight change due to mesh refinement; it proves the sufficiency of the
basic parameters. To investigate mesh influence in more detail, we
analyzed the whole range of nodal diameters for the first two natural
modes. Results shown in Fig. 9, curves 1 : : : 3, represent mesh size of
200, 430, 800 thousands of volumes per blade passage. They prove
that the convergence in mesh is achieved at a mesh size of 200,000
control volumes per passage.
The effect of the number of blades in the model (five-blade

vs three-blade) was studied (Fig. 9, curve 4, mesh size is 200,000
volumes per passage) and appeared to be insignificant for the work.
This means that only blades neighboring to the middle blade affect
flutter. Thus, using a three-blademodel is enough for a reliable flutter
prediction. This result was also obtained in the investigation of
aerodynamic influence coefficients in plate cascades [45].
Thus, convergence is verified, so that in studies described later,

we use the basic parameters. The models consist of three blades;
work-per-cycle is calculated for forward (m > 0) or backward
(m < 0) traveling waves for the full range of nodal diameters.

IV. Results of Numerical Flutter Prediction in Blade
Wheels

A. Wheel 1

The calculation of work done by pressure was conducted for the
first four natural modes. Each mode was analyzed in a full range of
possible numbers of nodal diameters. Oscillations are specified in the
form of forward (along the wheel rotation) or backward traveling
wave. Amplitude was normalized such that the maximum blade
stress was 5 × 107 Pa. As explained previously, we investigated two
configurations of this wheel. The first, “shrouded”, is a production
wheel; in particular, shroud contact pairs are in a perfect contact. The
other, “cantilever” wheel, has blade shrouds slightly cut to be out of
contact with shrouds of the neighboring blades. This wheel rep-
resents wear of material in shroud contact pairs after long operation
time. The first four frequencies andmode shapes are shown in Fig. 10
for both wheel configurations; it is implied that the disk does not
influence the blade eigenmodes, hence the mode shapes do not
depend on the nodal diameter m. It is seen, first, that the natural
frequencies of the cantilever wheel are lower than those of the

Fig. 7 Basic mesh (∼200;000 control volumes per passage).

W (J)

case number
0

-0.0010

-0.0015

-0.0020

-0.0025

1 2 3 4 5 6 7

1 2 3 4 5

6 7

flutter

stability

Fig. 8 Influence of numerical effects on the work done by unsteady
aerodynamic pressure.

W (J)

0 4 8 12 16

1

m

m

0

-0.01

-0.02

0 4 8 12 16

W (J)

0

-0.001

-0.002

0.001

42 3
a) b)

Fig. 9 Work vsm: a) mode 1, and b) mode 2. Curves 1–3: three-blade model, with different mesh sizes. Curve 4: five-blade model.
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shrouded one due to the less overall stiffness of the structure. Second,
and most important, in the range n � 70 : : : 80%, there is a mode
shape exchange between the second and the thirdmodes of cantilever
blades; bending mode becomes torsional, and vice versa, which
signifies a possible flutter occurrence. That is why flutter analysis has
been conducted for n � 80%, where the frequencies of the first four
modes are 232, 576, 664, and 1328 Hz for cantilever blades and 683,
1069, 1501, and 2299 Hz for shrouded blades (note that the lowest
mode in Fig. 10a cannot appear on a real wheel because the shroud
has essentially nonzero displacement; this mode is excluded from
consideration).
We assume that the cut of the blade shroud does not affect aero-

dynamics and use the same steady flow for both configurations.Work
done over modes of cantilever blades is shown in Fig. 11. Work for
the first and fourth modes is negative, whereas for the second and
third modes it is positive for m � 5 : : : 11 and 5 : : : 16, respectively.
Therefore, for this wheel, we predict blade flutter in the second and
third modes.

Work calculated for the samewheel with shrouded blades is shown
in Fig. 12. For the first four natural modes, the work is negative. We
therefore predict the stability of this blade wheel.
The difference in flutter predictions for blades that are in and out of

contact with each other through the midspan shroud leads us to a
conclusion that a wheel that was initially designed to be flutter-free
can actually flutter after some time of operation due to wear of
material in the shroud and following change of the blade mode
shapes and frequencies. To avoid this, the designer should determine
safe operation period by taking into account change of modes and
frequencies due to wear.

B. Wheel 2

Flutter analysis for the shrouded wheel 2 has been conducted for
two operating regimes, corresponding to very close rotation speeds,
n � 94 and 100%, which is why we used the same mode shapes
and frequencies; the difference is only in aerodynamics. Blade
eigenmode calculation was conducted with the disk elasticity taken
into account; blades are in perfect contact through the shroud contact
pairs. The resulting eigenmodes turned to be very sensitive to nodal
diameters; the interference diagram is shown in Fig. 13. For the
work calculation, we specified oscillation amplitude such that the
maximum blade stress was 107 Pa. Work-per-cycle calculated for
these modes is shown in Fig. 14c as “no tension” line. In contrast to
wheel 1, it is not sinelike because each nodal diameter was modeled
not only by a different phase shift but also by a different mode shape.
It is seen that, for m � 8 : : : 10, the work, though negative, comes
close to zero, which means that the flutter boundary is somewhere
close, and a slight change in the problem formulation can replace
stability by flutter.
Such an important feature ignored so far is a shroud force. Indeed,

when assembling thewheel, one should apply some force to a blade to
make its shroud contacting with the neighboring blade shroud. As a
result, in the assembled wheel, each blade is pretensioned by a force,
whichmakes blades contacting each other through the shroud. Such a

800

1000

1200

0

200

400

600

1200

1400

1600

1800

2000

0

200

400

600

800

1000

f (Hz)

20 40 60 80 1000

n (%)

n (%)
20 40 60 800 100

f (Hz)

a)

b)
Fig. 10 Campbell diagram of wheel 1: a) shrouded, and b) cantilever.
Blade contours represent relative displacement amplitude.
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Fig. 11 Work done by unsteady pressure vs the number of nodal
diameters for wheel 1 with cantilever blades.
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Fig. 13 Interference diagram of the wheel 2 at n � 100% (first three
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tension can affect the mode shapes and change flutter prediction.
Calculatedmode shapeswith shroud tension taken into account show
that the first family of modes (bending modes, Fig. 15a) is close to
those with no tension; however, the second and the third mode
families (bending–torsional modes) are mixed, and one cannot
clearly distinguish nodal diameters (Fig. 15b). In this situation, we
took a blade mode that is closest to the one of untensioned wheel
modes (namely, m � 3 for bending modes and m � 9 for bending–
torsional modes) and changed nodal diameters without changing the
mode shape and frequency. This simplified approach does not exactly
represent the physics but gives a qualitative effect of the shroud
tension. The tension turned out to be extremely important due to
change of the mode shapes (Figs. 14a, 14b). Shown in Fig. 14c, by

“tension” curve is the work calculated for a tensioned wheel in the
manner described. It is seen that the prediction is changed from
stability to flutter, which means that the shroud tension can signi-
ficantly affect the result, at least near the flutter boundary.
Work done by unsteady pressure over the first two natural modes

of tensioned wheel is shown in Fig. 16 by continuous curves. It is
seen that both modes are damped at n � 170 Hz; hence, we predict
stability, whereas at n � 159.5 Hz, the second mode (f � 910 Hz)
with 5 : : : 9 nodal diameters is in flutter zone.

C. Influence of Midspan Shroud

Midspan shroud is a structure usually introduced to increase the
damping of blades and change their natural modes, which is why it is
necessary to take it into account when calculating static stress and
natural modes and frequencies. On the other hand, it is a common
practice to ignore midspan shroud when calculating steady airflow
because the shape of the blade shroud is usually designed to affect the
flow as little as possible. However, the influence of the shroud on
unsteady airflow is not so clear, which is why we consider it in this
section.
We investigated twomodels of the samewheel; the geometry of the

first consists of the blade passage only, whereas the other includes
geometry of the midspan shroud (note that the shroud is always
modeled in modal analysis). Steady flow conditions, natural modes,
and frequencies are the same and correspond to n � 159.5 Hz
regime. Results are shown in Fig. 16 by continuous and dashed
curves for the model with and without the shroud, respectively. It is
seen that neglecting the midspan shroud in unsteady flow analysis
increases thework for bothmodes for anynumber of nodal diameters.
The same result was obtained for the work done for the untensioned
wheel, which is not presented here. In other words, neglecting the
shroud is conservative: if the shroud is ignored, then when one
predicts stability, it is reinforced by the shroud; in the case of flutter,
additional investigation with the shroud “aerodynamically” taken
into account is necessary. We cannot, of course, make the same con-
clusion for any wheel, but results obtained for the wheel under con-
sideration could be a good point to start checking shroud influence for
other wheels.

D. Influence of Inlet Angle of Attack

One of the natural modes was used for the investigation of
influence of the inlet angle of attack α. At each point of the inlet, the
velocity direction was changed by a specified angle, whereas the
absolute value of the velocity remained unchanged. The boundary
values of other quantities, pressure and temperature, were not
changed. Such an approach is only valid for a small change of α
because any significant change of the angle of guide vanes changes
the steady flow in all stages, whereas we assume that the change is
localized in the wheel following the guide vanes. Thus, the result of
such an investigation should not be used in design; however, for a
small deviation of α, it gives a qualitative influence of the inlet angle
of attack, which is useful to know.
The calculation was conducted for the second mode, m � 9,

without taking midspan shroud tension into account. The model of
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Fig. 14 Effect of shroud tension of the wheel 2 on the second mode at

n � 159.5 Hz: a) tensioned blades (m � 9), b) untensioned blades, and
c) work vsm.

Fig. 15 Examples of natural modes calculated with shroud force taken
into account: a) bending family, nodal diameters are clearly
distinguished, and b) bending–torsional mode, no clear nodal diameters
are seen.
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unsteady flow included the shroud. The results of the analysis are
shown in Fig. 17. It is seen that a deviation of the angle by 4 deg or less
insignificantly changes work-per-cycle, especially compared with
other numbers of nodal diameters (Fig. 14). A deviation by higher
angles yields a positive work, which rapidly increases with the
increase of jΔαj. A possible explanation is the appearance of local
stall zones. However, as was argued previously, such high angles
require a steady flow recalculation in all stages of the compressor, and
results of the present analysis in this case are hardly meaningful. We
therefore conclude that a deviation of the inlet angle of attack caused
by a change of guide vanes angle (due to manufacturing tolerances,
wrong operating program, or other reasons) by 4 deg or less does not
essentially affect flutter.

E. Influence of Blade Mode Shape Change Due to Manufacturing
Tolerances

Let us now investigate the influence of manufacturing tolerances
associatedwith the blade production or blade shape change in design.

First, consider the distribution of work done by pressure along the
blade span. This distribution is important when redesigning the blade
to avoid flutter. Shown as “original” in Fig. 18a is the distribution
of the work for the second mode m � 10. Blade mode shapes are
calculated without modeling the shroud tension. An analysis of un-
steady aerodynamics is conducted with taking the shroud into
account. It is seen that the most positive values of the work are
achieved at the blade tip. However, the total work for the blade is
negative (Fig. 18b) because of the region of negative work at
40 : : : 80% of the span, where the blade dissipates the energy, which
in total exceeds the amount of income energy at 90 : : : 100% of
the span.
However, small changes of nodal line locations (for example, due

to tolerance for the blade thickness or blade twisting angle) can
change this balance and change the sign of the total work due to the
change of the tip region length where the work is positive. To check
this hypothesis, we calculated thework for themode shape shifted by
�5 mm along the span, without changing the steady flow. Second
mode of the wheel 2 blade with m � 10 is studied. The shift was
introduced by changing the interpolated mode shape function; the z
coordinate directed along the blade span was replaced by z� 0.005
to z − 0.005 m, respectively. The distribution of the work along the
blade span is shown in Fig. 18a. It is seen that the tip region size,
where the work is positive, and the amount of work are increased or
decreased depending on the direction of the mode shape shift. The
total work-per-cycle done for thewhole blade is shown in Fig. 18b for
original and shifted mode shapes. It is seen that, because of the
change of the work done at the blade tip region, total work becomes
positive for the mode shifted to the blade root. We conclude that
even a relatively small shift of the nodal lines (by 5mm) due tomanu-
facturing tolerances or other reasons can yield flutter. If such a
situation occurs for the original blade, one could recommend a
redesign of the blade shape such that nodal lines are shifted to the
blade tip. Thus, the mode shape can significantly change flutter pre-
diction, and its change can be an efficient way to avoid flutter.
The distribution of work along the blade span shown in Fig. 18a

gives also an important example when results of 2-D and 3-D flutter
analyses are different. Indeed, in the practice of jet engine developers
and in academic studies, the problem is often considered in 2-D
formulation, for the blade cross section at 80 : : : 100% of the blade
span. It is assumed that such 2-D analysis drives the total instability of
the blade. However, Fig. 18 shows a blade, which is stable, but
its cross section at 90 : : : 100% transfers energy from the flow to the
blade. In other words, a 2-D analysis of this blade would predict
flutter, whereas a 3-D analysis predicts stability. Obviously, one
could find other blades with such mode shape that a 2-D analysis
would predict stability, whereas 3-D would predict flutter.

V. Experimental Validation of Numerical Results

The validation of numerical flutter prediction for wheels 1 and 2
was conducted at special full-scale tests of the gas-turbine engine.
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Fig. 17 Work-per-cycle vs deviation of the angle of attack from the
design value for the second mode,m � 9 of wheel 2.
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Fig. 18 a) Distribution of work-per-cycle along the blade span for
original and shifted-to-the-root (−5 mm) and tip (�5 mm) mode shapes,
and b) total work-per-cycle.

Fig. 19 Sketch of the test facility for blade flutter detection during
engine test: 1) altitude chamber, 2) receiver, 3) honeycomb, 4) mesh,
5) piping, 6) engine, 7) force meter platform, and 8) engine mounting.
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A. Test Facility, Strain Gauge Locations, and Test Procedure

An experimental detection of compressor blade flutter was
conducted using a special test facility (Fig. 19) with a simulation of
altitude, speed, and environmental air conditions, including required
flow irregularity, flow pressure, and temperature at the engine inlet.
Airflow at the inlet of the fan has average values of the total

pressure and stagnation temperature equal to the averaged values of
the parameters of the fan operating at flight conditions on an aircraft
with required margins of safety. From a compressor station, the air

flows through refrigerating units or air heaters providing required
pressure and temperature values.
The blades of wheels 1 and 2 were prepared with strain gauges

located in the regions of maximum stress for the first four natural
modes, which are usually most unstable (Fig. 20). The maximum
stress zones for these modes were obtained by a numerical study and
during laboratory tests on a vibration-testing machine. To perform a
phase shift analysis for the detection of a number of nodal diameters
in coupled blade–disc–flow vibrations, several consecutive blades
were prepared with strain gauges.
A multichannel high-efficiency recording apparatus was used

to record and control data from the strain gauges. It provides the
required discretization frequency of signal processing with a spectral
resolution of 1 Hz and an amplitude accuracy of 2%. The connection
between strain gauges and processing apparatus is established
through a multichannel remote converter.
The processing of data from strain gauges consisted of the analysis

of spectral structure and the correlation analysis of data from con-
secutive blades using narrowband spectral analysis.

B. Test Results

As well as in numerical analysis, two modifications of wheel 1
were tested: bladeswithmidspan shroud and cantilever blades. Based
on the analysis of strain gauge data from the shrouded wheel, no
flutter was detected in thewhole range of the fan speed. At two speed
ranges, the vibration amplitudes were at increased but still acceptable
levels. First, at n � 40 : : : 60% (i.e., at relatively low rotation speeds,
where the flow is unstable), random forced vibrations with low
amplitudes were detected. Second, at n � 80%, resonant vibrations
occurred in the first four modes with an acceptable level of stress
amplitudes (Fig. 21).
However, signal processing from the strain gauges of wheel 1 with

cantilever blades shows that starting from rotor speed n � 55%,
nonresonant vibrations occur in modes 2, 3, and 4 with a high total
level of vibration stress (Fig. 22a). Spectral and correlation analysis
from both neighboring and remote blades shows flutter onset in
second (m � 6 : : : 7) and third (m � 5 : : : 14) natural modes
(Fig. 22b). Based on correlation analysis, oscillations in the fourth
mode were classified as random forced vibrations.
Thus, test results of wheel 1 are in full agreement with the

numerical predictions (Sec. IV.A). Indeed, the predicted stability and
flutter regimes coincide with the test stability and flutter regimes;
moreover, flutter was observed in the same modes and nodal
diameters as predicted to be unstable (compare Figs. 11, 22b).
The test results for wheel 2 were obtained for the full range of

rotation speeds; inlet airflow parameters included regimes with
heating and compressing the flow. During the test, flutter was
detected at the regime n � 159.5 Hzwith a dominating frequency of
906 Hz (Fig. 23). Signal processing showed that vibrations occurred
in the second mode with forward traveling wave and a number of
nodal diametersm � 6 : : : 8. Pressure gauges installed on the casing
over thewheel detected forward traveling rotating pressurewavewith
m � 8. At other operating regimes, including n � 170 Hz, no flutter
was detected. These results demonstrate excellent agreement

Fig. 20 Strain gauge locations on tested blades: a)wheel 1, andb)wheel 2.
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Fig. 21 Strains measured for shrouded blade wheel 1 (Campbell
diagram). Dots represent spectral peaks with amplitudes exceeding noise
level.
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between test data and the numerical prediction of flutter onset
(Fig. 16b) for the wheel considered.
Good correlation between numerical and test data for both wheels

considered validates the procedure and the workflow developed,
which will be used in the design of new compressor blades.

VI. Conclusions

A flutter prediction procedure based on the energy method has
been developed. It is valid for the unstalled flowconditions,which are
typical for operating regimes. Two examples of application of this
procedure to real blade wheels are given. Both are verified by full-
scale tests in two operating regimes: stable and flutter.
The influence of numerical parameters, as well as blade design

parameters and assembling conditions on flutter onset, is studied. It is
shown that there is no significant influence of increased numerical
accuracy and flow angle of attack variation within manufacturing
tolerance. Tension in themidspan shroud has a considerable effect on
the predicted flutter onset, although the inclusion of the midspan
shroud in the unsteady aerodynamic model does not have significant
effect. It is shown that, for a reliable flutter prediction, it is enough to
use the three-blade one-stage aerodynamic model and to calculate
work done by unsteady pressure for the middle blade during the third
oscillation period.
The parameters of the modeling experimentally verified in this

paper can be used in the design of new compressors that have a
nontypical blade or disc shape for the prediction of flutter onset. They
are also suitable for blade wheel design or redesign for flutter
suppression near compressor operating regimes with unstalled
airflow.
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