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Abstract—It is assumed in all classical studies of panel flutter that the unsteady pressure of a gas
flow can be calculated according to the piston theory. But the piston theory holds only for large
Mach numbers and does not cover the region 1 < M < 2. It was recently shown that, in this range
of Mach numbers, there is a region of panel flutter, referred to as single-mode flutter, which differs
from the “classical” (coupled) flutter. In the present paper, single-mode flutter is studied numerically
for a strip-shaped periodically supported plate. The boundaries of stability are constructed, and the
influence of the strip width and the distance between the supports is analyzed.
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1. INTRODUCTION
Panel flutter is the phenomenon of self-excited vibrations of lining panels in aircraft moving at a

large velocity. Usually, this flutter does not lead to the instantaneous fracture of the panels (in contrast
to wing flutter), but it results in rapid accumulation of the fatigue damage and sharply decreases the
operation life of the panels. Although panel flutter was observed in supersonic rockets already during
the WWII, the first meaningful theoretical studies appeared several decades later [1, 2]. These studies
were based on the use of the Kirchhoff–Love model of the plate motion and the law of plane sections for
the gas pressure on the plate [3]. After Movchan’s studies, the panel flutter problem was investigated
in many complicated settings [4, 10]. In an overwhelming majority of studies, the “elastic” part of the
problem was sophisticated; namely, multilayer and composite plates, nonflat shells, and nonlinear models
of the plate and the material including viscoelastic materials, shape memory materials, and materials
with piezoelectric properties were considered [11–13]. The “aerodynamic” part of the problem remained
unchanged; namely, the piston theory was used.

For the linearized unsteady pressure of an inviscid gas acting on a vibrating plate, gas dynamics
provides an expression in the form of an integral operator, applied to a combination of the deflection and
its derivative, with kernel containing special functions (see the statement of the problem below). This
expression gives the piston theory formula in the limit as M → ∞ but has nothing in common with the
piston theory for Mach numbers close to unity. The substitution of the exact expression into the equation
of the plate motion leads to an integro-differential equation for the eigenvalues which, because of the
complexity of the mathematical problem, has been examined only in a few papers. In [14], the general
solution of this integro-differential equation was obtained analytically, and the eigenvalue problem was
thus reduced to an algebraic problem, but the latter turned out to be so complicated that no attempts
have been made to solve it directly. In [7, 15, 16], the integro-differential equation was solved numerically
by the Bubnov–Galerkin and finite element methods for some specific parameters of the problem. It was
noted that, along with coupled flutter, which is obtained when the problem is solved by using the piston
theory, flutter of a different type, i.e., single-mode flutter, was obtained in calculations for 1 < M < 2.
But this was explained by a numerical error, and several authors even claimed this to be a nonphysical
effect.
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Later, the problem of studying panel flutter by using nonlinear aerodynamic models was solved
numerically in a number of papers. Flutter at transonic velocities was studied in [17, 18], where the
Euler equations were solved, and flutter in a viscous gas was investigated in [19–22], where the Navier–
Stokes equations were solved. In these studies, the problem of the plate motions in time was studied
directly, and the unstable state was not divided into single-mode flutter and coupled flutter.

In [23], panel flutter for a plate shaped as a strip of large dimensions (two-dimensional problem)
was studied by an asymptotic method [24]. It was rigorously proved that single-mode flutter exists, the
physical vibration amplification mechanism was revealed, and it was shown that it cannot be discovered
when solving the problem by the piston theory and generally by using aerodynamic models where the
unsteady pressure on the plate is expressed in terms of its deflection in the form of any differential
constraint. Later this problem was solved numerically [25], and the stability boundaries were constructed
for the first six eigenmodes. It was also shown that the instability domain consists of a coupled flutter
domain and single-mode flutter domains for various modes and that single-mode flutter significantly
extends the instability domain towards the region of small Mach numbers and short plates. The influence
of the boundary layer [26], as well as of the structural damping of the plate [27] was studied as well,
and the limit cycles of nonlinear flutter vibrations were analyzed [28, 29]. Finally, experiments were
performed [30], where single-mode flutter excitation for Mach numbers in the interval 1 < M < 1.3 was
registered for the first time. Thus, single-mode flutter of an elastic strip (two-dimensional statement of
the problem) has currently been studied to a large extent.

The three-dimensional problem of single-mode panel flutter was studied in [31, 32] for rectangular
plates of large dimensions by using the modified asymptotic method developed in [33]. The statement
of the problem of studying the rectangular plates numerically without any additional assumptions
about their dimensions is more complicated than the two-dimensional problem, because the integration
domain in the integro-differential expression for the unsteady pressure acting on the plate becomes two-
dimensional and has the shape of a triangle [34]. But this two-dimensional integral can be reduced
to a one-dimensional integral in one special case, i.e., in the case of an infinite series of rectangular
plates connected by hinges or, which is the same, in the case of a periodically supported elastic strip.
This statement of the problem can be considered as the first approximation to the study of flutter of
an isolated rectangular plate. In this paper, we solve this problem numerically by the modified method
developed in [25].

2. STATEMENT OF THE PROBLEM

In the linear approximation, we study the stability of a thin elastic infinite strip built into an absolutely
rigid plane surface. One side of the strip is in a supersonic gas flow, and the other side is subjected
to constant pressure, which balances the strip in the plane unperturbed state. The strip is periodically
supported by hinges along the infinite direction; its front and back edges are also hinged (see Figs. 1
and 2). Because of periodicity, all spans are either simultaneously stable or simultaneously unstable, and
hence in what follows, we consider the stability of an individual span as an element of the strip directly
interacting with the neighboring spans. The individual span itself will be called the plate.

We place the coordinate system Oxyz in the plane of the unperturbed strip so that the plate under
study occupies the domain 0 ≤ x ≤ Lxw, 0 ≤ y ≤ Lyw, z = 0. The z-axis is perpendicular to the plate
plane so that the coordinate system forms a right trihedron.

We assume that there is no membrane stress in the plate, but the plate has flexural rigidity Dw,
which, together with the thickness h and the material density ρm, is assumed to be constant. The plate
vibrations are small (i.e., the plate deflection is small compared with the thickness) and are described by
the Kirchhoff–Love equation of motion. The mass forces are neglected.

The gas is assumed to be inviscid and perfect with density ρ0 and speed of sound a0 in the unperturbed
state. The gas flow is translational in the domain z > 0 with a constant supersonic velocity U0 in the
direction of the x-axis. The flow is assumed to be adiabatic, and the boundary layer is neglected.

We assume that a small perturbation is imposed on the plate at the initial time. Let us prove that if
the gas flow incoming from infinity does not contain perturbations and the perturbations themselves are
initiated by the plate, then the perturbed gas motion is potential. Indeed, the unperturbed gas motion
is potential and the plate action on the gas is equivalent to the application of surface forces, which can
cause only a potential flow by the Thompson theorem. Therefore, the gas perturbations due to the plate
are always potential.
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Fig. 1.

Fig. 2.

Now assume that the flow is locally perturbed as well and the perturbation contains a vortical part.
By the Thompson theorem, this part is frozen in the gas particles, acts on the plate as a static load on
a finite time interval, and hence cannot result in instability. Thus, it suffices to consider only potential
perturbations of the gas in stability analysis.

The Kirchhoff–Love equations of a thin elastic plate motion in the gas flow and the boundary
condition of hinged fixation at the plate edges have the form

ρmh
∂2w

∂t2
+ DwΔ2

xyw + p = 0, 0 < x < Lxw,

w =
∂2w

∂x2
= 0, x = 0, Lxw,

w =
∂2w

∂y2
= 0, y = 0, Lyw,

(2.1)

where Δxy is the two-dimensional Laplace operator and w(x, y, t) is the plate deflection. It follows from
the linearized theory of gas motion that the pressure difference p(x, y, t) acting on the plate can be
expressed in terms of the gas motion potential ϕ(x, y, z, t) as

p(x, y, t) = −ρ0

(
∂

∂t
+ U0

∂

∂x

)
ϕ(x, y, 0, t). (2.2)

MECHANICS OF SOLIDS Vol. 50 No. 3 2015



FLUTTER OF A PERIODICALLY SUPPORTED ELASTIC STRIP 321

The system of linearized equations and boundary conditions describing the development of small gas
perturbations has the form

(
∂

∂t
+ U0

∂

∂x

)2

ϕ − a2
0

∂2ϕ

∂x2
− a2

0

∂2ϕ

∂y2
− a2

0

∂2ϕ

∂z2
= 0, z > 0,

(
∂ϕ

∂x
,
∂ϕ

∂y
,

∂ϕ

∂z

)
→ 0 as z → +∞ along the ray z =

x − x0√
M2 − 1

,

∂ϕ

∂z
=

∂w

∂t
+ U0

∂w

∂x
, z = 0, x ∈ [0, Lxw];

∂ϕ

∂z
= 0, z = 0, x /∈ [0, Lxw].

(2.3)

The first equation in the system is the wave equation, where a0 is the speed of sound in the gas. The
second condition that grad ϕ tends to zero as z → +∞ along the characteristic z = (x − x0)/

√
M2 − 1

for fixed t and y holds only for perturbations whose are generated near the plate and increase with time.
Indeed, if we fix the coordinates y and t and increase z along the characteristic, then we observe the
perturbations generated at the preceding time instants, and since the perturbation increase, they decay
if time is counted backwards. The third condition in (2.3) is the gas flow tangency condition on the
vibrating plate and the surrounding absolutely rigid plane.

To pass to dimensionless variables, we take a0, ρ0, and h as dimension-independent quantities. Then
we have (the dimensionless variables are denoted by tilde)

x = x̃h, y = ỹh, z = z̃h, t =
t̃h

a0
, ϕ = ϕ̃a0h, w = w̃h.

In what follows, the tildes over the symbols are omitted for brevity, and all variables are assumed to be
dimensionless.

The dimensionless parameters are expressed in terms of the dimensional ones as follows:

D =
Dw

a2
0ρmh3

, Lx =
Lxw

h
, Ly =

Lyw

h
, M =

U0

a0
, μ =

ρ0

ρm
.

Here D, Lx, and Ly are the dimensionless rigidity, length, and width of the plate, and M and μ are the
Mach number and the dimensionless gas density.

The stability of an elastic plate in the gas flow is determined by the behavior of eigenmodes, and
therefore we further assume that the small perturbations of the plate and gas have the form

w(x, y, t) = W (x, y)e−iωt,

ϕ(x, y, z, t) = Φ(x, y, z)e−iωt.
(2.4)

With expressions (2.4) and the procedure of passing to dimensionless variables taken into account,
the closed system of dimensionless equations for perturbations consists of the plate motion equations

DΔ2
xyW − ω2W + P = 0, 0 < x < L,

P = −μ

(
−iω + M

∂

∂x

)
Φ(x, y, 0),

W = 0, x < 0, x > Lx,

W =
∂2W

∂x2
= 0, x = 0, x = Lx,

W =
∂2W

∂y2
= 0, y = 0, y = Ly

(2.5)
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Fig. 3.

and the gas motion equations(
−iω + M

∂

∂x

)2

Φ − ∂2Φ
∂x2

− ∂2Φ
∂y2

− ∂2Φ
∂z2

= 0, z > 0,
(

∂ϕ

∂x
,
∂ϕ

∂y
,

∂ϕ

∂z

)
→ 0 as z → +∞ along the ray z =

x − x0√
M2 − 1

,

∂Φ
∂z

= −iωW + M
∂W

∂x
, z = 0.

(2.6)

Equation (2.6) for the potential Φ can be solved analytically by using the Laplace transform [34, $4.8],
and its solution has the form

Φ(x, y, 0) =
∫∫
K

− 1
π

[
−iωW (x1, y1) + M

∂W (x1, y1)
∂x1

]
exp

[
iωM

β2
(x − x1)

]

× 1√
(x − x1)2 − β2y2

1

cos
[

ω

β2

√
(x − x1)2 − β2y2

1

]
dx1 dy1, (2.7)

where K is the triangle obtained by the intersection of the inverted Mach cone issuing from the
point (x, y) with the entire plate (Fig. 3) and β =

√
M2 − 1.

Thus, after substitution of the expression (2.7) into the plate motion equation (2.5), this equation with
the boundary conditions of hinged support is the problem of determining the complex eigenvalues ω. This
problem is solved numerically. We note that the eigenvalue ω enters the equation in a complex way; such
problems were studied in several papers (e.g., see [35]). The system is unstable if and only if at least one
of the eigenfrequencies ωn lies in the upper half-plane Im ωn > 0 of the complex plane. The aim of the
paper is to construct the instability domains in the space of dimensionless parameters of the problem.

3. NUMERICAL METHOD
We solve the eigenvalue problem for the integro-differential equation (2.5) of the plate motion with

the expression (2.7) for the potential Φ taken into account numerically by the Bubnov–Galerkin method.
The method developed on the basis of [25] will be described below.

The plate deflection W (x, y) is represented as the superposition of basis functions for which we take
the mode shapes of the plate vibrations in vacuum,

W (x, y) =
Nx∑
k=1

Ny∑
l=1

Ck
l sin

kπx

Lx
sin

lπy

Ly
=

Nx∑
k=1

Ny∑
l=1

Ck
l Wk(x)W l(y), (3.1)

where the Ck
l are unknown constant coefficients. The basis functions can be represented as Nx × Ny

tables (see Table 1) so that the column number is the number of the basis function with respect to x and
the row number is the number of the basis function with respect to y.
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Table 1

1 2 3 · · · Nx

1 W1(x)W 1(y) W2(x)W 1(y) W3(x)W 1(y) · · · WNx(x)W 1(y)
2 W1(x)W 2(y) W2(x)W 2(y) W3(x)W 2(y) · · · WNx(x)W 2(y)

3 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
Ny W1(x)WNy (y) W2(x)WNy (y) W3(x)WNy(y) · · · WNx(x)WNy (y)

We number them as follows:

T(l−1)Nx+k(x, y) = Wk(x)W l(y).

The sum (3.1) can be rewritten as

W (x, y) =
N∑

m=1

CmTm(x, y), Tm(x, y) = Wk(x)W l(y), Cm = Ck
l , (3.2)

where N = NzNy . The numbers k and t can be reconstructed from the number m,

l =
[

m − 1
Nx

]
+ 1, k = m − Nx(l − 1), (3.3)

where the square brackets denote the integer part. Further, we substitute the sum (3.2) into the plate
motion equation (2.5). We multiply it successively by (2/Ly)Tn(x, y), n = 1, . . . , N , integrate over x
from 0 to Lx and over y from 0 to Ly, and obtain a homogeneous system of linear algebraic equations for
the complex coefficients Cm with matrix A(ω),

A(ω) = K − Lxω
2

2
E + P (ω). (3.4)

Here E is the identity matrix and K is the diagonal rigidity matrix responsible for the properties of the
plate. Its entries kmm have the form

kmm =
Lx

2
D

[(
kπ

Lx

)4

+ 2
(

kπ

Lx

)2( lπ

Ly

)2

+
(

lπ

Ly

)4]
,

where the indices k and l are calculated in terms of m by formula (3.3) and P is the matrix of aerodynamic
forces with entries

pnm(ω) =
2
Ly

Ly∫
0

Lx∫
0

P (x, y, Tm, ω)Tn(x, y) dx dy. (3.5)

In Section 5, we transform the expression (3.5) and describe a method for calculating the entries of the
matrix P .

Thus, the equation for the eigenfrequencies has the form

det A(ω) = 0 ⇔ det
(

K − Lxω
2

2
E + P (ω)

)
= 0. (3.6)

4. METHOD FOR SOLVING THE FREQUENCY EQUATION
Consider the plate in a vacuum. This case is described by the frequency equation (3.6) without the

matrix P responsible for the presence of aerodynamic forces,

det
(

K − Lxω2

2
E

)
= 0. (4.1)
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This equation has N distinct real solutions for ω2, which are associated with the frequencies
ωn0 =

√
(2/Lx)knn in vacuum. We do not consider the negative frequencies, because the corresponding

eigenmotions coincide for negative and positive frequencies.
If the aerodynamic forces are added, then the frequencies cease to be real. This follows from the

fact that the matrix P (ω) is nonsymmetric and complex. Therefore, the eigenvalue problem is not self-
adjoint, and the eigenfrequencies are complex.

We solve the frequency equation numerically by using two modifications of the iteration method.
First, it is necessary to calculate the nth eigenfrequency ωn. For the initial approximation we take the
nth eigenfrequency ωn0 =

√
(2/Lx)knn in vacuum. Further, we assume that the pth approximation ωnp

is known. We compose the matrix Ap+1(ωnp, ωn(p+1)) so that ωn(p+1) is contained in this matrix in the
simplest way. We choose all its entries aij except for ann so that they are the same as in the matrix A(ωnp)
and calculate the coefficient ann by the formula

ann = knn − Lx

2
(ωn(p+1))

2 + pnn(ωnp), (4.2)

where knn and pnn are the corresponding entries of the matrices K and P .
Thus, the equation for the (p + 1)st approximation ωn(p+1) has the form

det[Ap+1(ωnp, ωn(p+1))] = 0. (4.3)

This is a linear equation for (ωn(p+1))2, and in the set of these two values, we take ωn(p+1) in the right
half-plane of the complex plane Reωn(p+1) > 0.

We continue to calculate the iterations of ωn until the following condition is satisfied:∣∣∣∣ ωnp − ωn(p−1)

ωnp

∣∣∣∣ < ε. (4.4)

The calculations were performed for ε = 10−6. The convergence problem will be considered in
Section 6.

The second modification of the iteration method is used in the case of frequencies ωn = ωj
1 and

ωn+1 = ωj
2 (here we use the notation ωn = ωk

l as in the case of basis functions), which are responsible
for the appearance of coupled flutter. This method is based on the fact that, for certain parameters of
the problem, these two frequencies approach each other in the complex plane. It is necessary to use the
modified iteration method, because the iterations may be cycled as they approach the desired frequency,
so that ωn(p+1) jumps from one branch to the other. The modified method solves this problem as follows.
We compose the matrix Ap+1(ωnp, ωn(p+1)) for the following approximation, which simultaneously
contains two entries of the matrix

ajj = kjj −
Lx

2
(ωn(p+1))

2 + pjj(ωnp), j = n, n + 1. (4.5)

All other coefficients aij of the matrix Ap+1(ωnp, ωn(p+1)) remain the same as A(ωnp). By solving
the equation detAp+1(ωnp, ωn(p+1)) = 0, we obtain four roots and take two of them with positive
real part, s1 and s2. These two roots correspond to the two frequencies ωn and ωn+1. The following
criterion allows us to choose the root corresponding to the desired frequency correctly. We let s3 denote
the point at the middle of the segment connecting s1 and s2 in the complex plane s3 = 1

2 (s1 + s2).
We draw the straight line through s3 at the angle π/4 to the real axis. The root above this straight
line corresponds to the frequency ωn, and the other root corresponds to the frequency ωn+1. Thus,
if (Im s1 − Im s3) > (Re s1 − Re s3), then s1 = ωn and s2 = ωn+1, and vice versa.

5. CALCULATION OF THE AERODYNAMIC MATRIX P

To calculate the entries of the aerodynamic matrix P (ω), it is necessary to calculate the perturbation
of the pressure P which enters the equation of motion (2.5). Formula (2.7) is the analytic expression
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of the potential Φ(x, y, ω). Let us transform it for W (x, y) = sin(κx) sin(λy). We represent the two-
dimensional integral over the triangle K as a repeated integral over x and y; then the integral over y can
be calculated analytically. The obtained expression has the form

Φ(x, y) = − 1
β

sin(λy)

x∫
0

(−iω sin(κx1) + Mκ cos(κx1)) exp
(

iωM

β2
(x − x1)

)
J0(ξ) dx1, (5.1)

where J0 is the Bessel function of order zero and ξ =
√

ω2 + (βλ)2(x − x1)/β2.
Now we substitute (5.1) into the expression (2.5) for the pressure perturbation, differentiate, collect

equal terms, and obtain

P (x, y, Tm, ω) = sin(λy)
{

μM

β
(−iω sin(κx) + Mκ cos(κx))

+
μ

β3

x∫
0

(−iω sin(κx1) + Mκ cos(κx1)) exp
(

iωM

β2
(x − x1)

)
(iωJ0(ξ) − M

√
ω2 + (λβ)2J1(ξ)) dx1

}

= W l(y)Px(x,Wk, ω). (5.2)

We use the expression (5.2) to transform formula (3.5) for the entries of the matrix P . To be definite,
we set Tm(x, y) = Wk(x)W l(y) and Tn(x, y) = Wr(x)W s(y). After the substitution of (5.2) into (3.5),
the two-dimensional integral splits into a repeated integral, and the integral over y can be calculated
analytically,

pnm(ω) =
2
Ly

Ly∫
0

Lx∫
0

P (x, y, Tm, ω)Tn(x, y) dx dy =
2
Ly

Ly∫
0

Lx∫
0

W l(y)Px(x,Wk(x), ω)Wr(x)W s(y) dx dy

=
2
Ly

Ly∫
0

W l(y)W s(y) dy

Lx∫
0

Px(x,Wk(y), ω)Wr(x) dx = δs
l

Lx∫
0

Px(x,Wk(y), ω)Wr(x) dx, (5.3)

where δl
s is the Kronecker delta.

One can see that the nonzero entries pnm are given by the expression s = l, which holds if and only if
[(m − 1)/Nx] = [(n − 1)/Nx]. Thus, the nonzero entries pnm fill square blocks on the main diagonal of
the matrix P .

Further, to calculate the nonzero pnm, it is required to calculate two integrals, the outer integral (5.3)
and the inner integral (5.2). Both integrals are calculated by the trapezium method. The number of
partition points used to calculate the outer integral was equal to 10Nx, i.e., 10 points per half-wave of
deflection of the basis function with the maximum number in the direction of the x-axis. The number
of partition points used to calculate the inner integral was equal to 22. The sufficiency of this amount is
studied below in Section 6.

Note that, in the flow, the mode shapes of the plate vibrations along the x-axis (the downstream
direction) are different from the mode shapes of vibrations in vacuum, while the vibrationsalong the y-
axis (the direction across the stream) do not change and are sinusoidal as in vacuum,

ωj
i (D,μ,Lx, Ly) = ω1

i (D,μ,Lx, Ly/j). (5.4)

Thus, the boundaries of the instability domain for the frequency with number j > 1 coincide with the
boundaries of the instability domain for the frequency with number j = 1 for an appropriate variation
in Ly. One can readily see that, for the same reason, it suffices to set Ny = 1 in the calculations.

6. CONVERGENCE

Figure 4 illustrates the convergence of the four frequencies ω1
1, ω1

2, ω1
3, and ω1

4 with respect to the
number of basis functions Nx. The calculations were performed for Ly = 1000 (long-dashed lines),
Ly = 500 (solid lines), and Ly = 200 (short-dashed lines) and the other dimensionless parameters were
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Fig. 4.

fixed: D = 23.9, μ = 0.00012, M = 1.2, and Lx = 200. The parameter ε was set equal to 10−6, the
number of partition points for the outer integral was equal to 10Nx, and the number of points for the
inner integral was equal to 30. In Fig. 4 a, the ordinate is the real part of the frequency, and the abscissa
is the number of basis functions Nx. Figure 4 c illustrates the relative errors of real parts corresponding
to the graph in Fig. 4, a, which can be calculated as

Pogr Re(Nx) =
∣∣∣∣ Re ω(Nx) − Re ω(Nx − 1)

Reω(Nx)

∣∣∣∣. (6.1)

In a similar way, Figs. 4 b, d show the relative errors of imaginary parts of the same frequencies. One can
see that the calculation accuracy is sufficient already for Nx = 4. It is this number of basis functions that
was used in all subsequent calculations.

Figure 5 illustrates the convergence of the real and imaginary parts of the same four frequencies with
respect to the parameter ε (4.4). All calculations were performed for the same dimensionless parameters
as in Fig. 4. In Figs. 5 a, b, the ordinate is the value of the respective real or imaginary part, and the
abscissa is the value of | log ε|. In this case, the parameter itself is equal to 10−3, 10−4, 10−5, 10−6, 10−7,
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Fig. 5.

10−8, respectively. Figures 5 c, d show the relative errors of the respective real and imaginary parts,
which are calculated by analogy with (6.1). In all subsequent calculations, we set ε = 10−6, which gives
a quite satisfactory accuracy.

Consider the convergence with respect to the number of points of integration of the outer integral,
Figure 6 illustrates the dependence of the frequency ω1

2 on the number of points k1 per one half-wave
of the basis function with maximum number in the downstream direction for the partition of the inner
integral (5.3). The total number of partition points for the outer integral is equal to k1 ·Nx. in Figs. 6 a, b,
the ordinate is the value of the respective real and imaginary parts, and Figs. 6 c, d show the relative
errors of the real and imaginary parts calculated by analogy with (6.1). The dimensionless parameters
are the same as on the preceding graphs, the values for Ly = 1000 are shown by dashed lines, and the
values for Ly = 500 are shown by solid lines. In all subsequent calculations, the number of points k1 per
one half-wave is equal to 10, and the sufficiency of this number follows from the presented graphs.

Further, Fig. 7 illustrates the convergence of the real and imaginary parts of the frequency ω1
2 with

respect to the number of partition points for the inner integral (5.2). The number of points is denoted
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by k2. In all subsequent calculations, the number of partition points for the inner integral is set equal
to 22.

To illustrate the iteration process, Figs. 8 a, b show the convergence for the frequency ω1
2

for Ly = 1000 (dashed lines) and Ly = 500 (solid lines). The frequency in vacuum corresponds to the
zero-order iteration. The calculations were performed for the same dimensionless parameters as in the
preceding graphs. Figure 8 c shows how the value of |det A(ω1

2(p))| increases with the iteration number.
It should be noted that, in the calculations, the iterations stop under condition (4.4), but an additional
criterion for the convergence of this method is that the real and imaginary parts of the frequency tend to
constant values as the number of iterations increases. This can be observed visually in Fig. 8. In a similar
way, the convergence was also verified for other frequencies for different values of the dimensionless
parameters.

Thus, analyzing how the frequency convergence depends on various parameters of the numerical
method, we obtained the following parameter values: Nx = 4, Ny = 1, ε = 10−6, the number of partition
points for the outer integral is 10Nx(= 40), and the number of partition points for the inner integral is 22.
These values are used below to construct the instability domain.
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7. RESULTS

For the four eigenfrequencies ω1
j (j = 1, . . . , 4), Figs. 9 a, b (ω1

1 and ω1
2, respectively) and Figs. 10 a, b

(ω1
3 and ω1

4, respectively) show the boundaries of the instability domain in the plane Lx–M , i.e., the level
lines Im ω1

j = 0. In all figures, the stability domain lies to the left, i.e., in the region of small Lx. All
calculations were performed for the constant parameters of the problem D = 23.9 and μ = 0.00012
corresponding to the case of a steel plate in air flow at the height 3000 m above sea level (or an aluminum
plate in more rarefied layers).

In Fig. 9 a, thin lines show the boundaries of the instability domain with respect to the first mode (the
frequency ω1

1) for Ly = 1000, 500, 450, 426, 400, 350 (the solid and dashed boundaries alternate as Ly

decreases). The domain M < 1.5 is shown. The maximum value of the length Lx max at which the plate
is stable for any width Ly is 57 and corresponds to Ly = 1000. For Lx > Lxmax and sufficiently large
values of Ly, there is an interval M∗(Lx, Ly) < M < M∗∗(Lx, Ly) where the plate is unstable with
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respect to the first mode. We note that the stability boundary for Ly = 1000 practically coincides with
the boundary calculated in [25] in the two-dimensional setting, i.e., for Ly = ∞. As the span width Ly

decreases, the range of Mach numbers at which the plate is unstable decreases and, for Ly ≈ 425, the
instability domain spits into two isolated subdomains; one of them, lying in the region of smaller values
of Lx, corresponds to single-mode flutter and the other corresponds to coupled flutter. As Ly continues
to decrease, the single-mode flutter domain decreases and shrinks to the values Lx ≈ 90 and M ≈ 1.23.
For Ly = 315, it completely shrinks to this point and disappears. As Ly decreases, the boundary of the
coupled flutter domain varies significantly slower and moves towards the region of greater values of Lx.

The bold lines in Fig. 9 a show the boundaries of the stability domain calculated by the piston theory
method, which can be used if the integral term in (5.2) is omitted. One can see that if the piston theory
is used, then the single-mode flutter domain is completely absent and the coupled flutter boundaries
calculated by the exact and piston theories closely approach each other as Ly decreases.

Figure 11 shows the flutter boundary in the range 1.5< M < 5.0 (the stability domain is to the left) for
the same values of Ly; the results of calculations by the exact and piston theories are shown by solid and
dashed lines, respectively. One can see that single-mode flutter is absent in this range of Mach numbers
and the the coupled flutter boundaries calculated by the exact and piston theories practically coincide.
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To compare the obtained results with the solution obtained by Movchan, we consider the flutter
boundary given by formula (3.8) in [2], which, in the dimensionless variables used in the present paper,
becomes

M =
D

μL3
x

8π3

3
√

3

(
5 +

(
Lx

Ly

)2)√
2 +

(
Lx

Ly

)2

. (7.1)

Compared with the version developed in [2], the version of the piston theory which is more suitable
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for M < 3 has the factor M/
√

M2 − 1, where M is the Mach number. The stability boundary for
this correction can be obtained from (7.1) with M on the left-hand side replaced by M2/

√
M2 − 1. In

Fig. 12, the dash-dotted and dotted lines illustrate the results of the flutter boundary calculations by the
original and corrected formula (7.1). In the same figure, the dashed and solid lines illustrate the results
of calculations by the above-described method using the piston and exact theories. The calculations
were performed for Ly = 350, 1000. One can see that for large Mach numbers all four methods give
practically coinciding flutter boundary. For M < 3, the uncorrected version of the piston theory, which
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was used in [2], gives a significant error. At the same time, the corrected version remains satisfactory up
to M ≈ 1.6. For lower values of M , the piston theory is inapplicable, because it cannot reveal single-
mode flutter.

Now let us analyze the stability boundaries for higher modes. Figure 9 b shows the flutter domain with
respect to the second mode (the frequency ω1

2) for Ly = 1000, 400, 280, 200. These domains are bounded
on the right by the values of Lx at which coupled flutter arises, because the first and second modes get
“tied up” at these values, and the first mode begins to increase while the second mode decreases. As to
the first mode, a decrease in Ly results in the contraction of the single-mode flutter domain; for Ly ≈ 177,
it shrinks to the point Lx ≈ 140, M ≈ 1.4 and disappears.

In contrast to the first two modes, the boundaries of the flutter domain with respect to the third and
fourth modes (which do not participate in formation of coupled flutter) respectively shown in Figs. 10 a, b
have the asymptotes M∗ = 1 and M∗∗ =

√
2 as Lx →∞ for Ly = ∞ [25]. The boundaries for Ly = 1000

are very close to the results of calculation of the two-dimensional problem. As Ly decreases, the flutter
domains move towards the regions of higher M and become bounded on the axis Lx. Further, as in the
case of single-mode flutter with respect to the first two modes, the instability boundaries contract to a
point and disappear. At the frequency ω1

3, the instability domain shrinks to the point Lx ≈ 190, M ≈ 1.6
and disappears for Ly ≈ 106. In a similar way, at the frequency ω1

4, the instability domain shrinks to the
point Lx ≈ 210, M ≈ 1.73 and disappears for Ly ≈ 81.

The shift of the single-mode flutter domains towards the region of higher Mach numbers with
decreasing Ly can be explained by the asymptotic theory of single-mode flutter [31], where under the
assumption that the plate dimensions Lx, Ly are sufficiently large, the eigenmotions were represented
as cyclic reflections of the waves traveling along the plate [33]. A criterion for the eigenmode amplification
(i.e., the flutter criterion for a given mode) is determined by the angle between the direction of the
traveling wave motion and the gas flow direction. A decrease in Ly leads to an increase in the angle
between the wave and the flow and accordingly to an increase in the range of M where amplification
can occur. In quantitative form, the results obtained in [31] imply the following single-mode flutter
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boundaries M∗(Lx, Ly) < M < M∗∗(Lx, Ly):

M∗ =

√
1 +

(
n

m

)2( Lx

Ly

)2

(1 +
√

Dk2
0),

M∗∗ =

√
1 +

(
n

m

)2( Lx

Ly

)2
√

1 + Dk2
0 +

√
4Dk2

0 + 1,

(7.2)

where m and n are the numbers of half-waves of natural shape in the direction of the x- and y-axes:

k0 =

√(
mπ

Lx

)2

+
(

nπ

Ly

)2

.

Figure 13 illustrates the comparison of the boundaries calculated numerically (bold lines) and by
the asymptotic formulas (7.2) (thin lines). Figure 13 a presents the flutter boundaries with respect to
the third mode for Ly = 1000, 200, 130, 110, which are shown by solid, dashed, dash-dotted, and dotted
lines, respectively. In Fig. 13 b, the same lines show the flutter boundaries with respect to the fourth mode
for Ly = 1000, 200, 100, 82. One can see that an increase in the Mach numbers where the instability is
observed in the “central” part of the flutter domain, Lx = 100, . . . , 300, is correctly described by the
asymptotics. The difference is only in the region of small Lx, where the condition of large dimensions is
not satisfied in the direction of the x-axis, and in the region of large M which is attained for sufficiently
small Ly, where the condition of large dimensions of the plate is violated in the direction of the y-axis.

8. CONCLUSION
In the linear approximation, we study the stability problem for an elastic periodically supported

strip with hinged front and back edges. One side of this strip is in the supersonic flow of a gas. The
aerodynamics is described by the exact theory of potential flow of fluids, which holds for M > 1 including
the region of small supersonic speeds. The flutter domains are numerically constructed for the first
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four eigenmodes. The flutter domain for the first mode consists of the coupled and single-mode flutters
domains. The flutter domains for the other three modes are only the single-mode flutter domains.

For sufficiently large values of the span width Ly , the instability domains are close to the correspond-
ing domains in the two-dimensional problem, which was solved in [25], where there is no dependence
on the coordinate y. As the parameter Ly decreases, the instability domains change significantly.
The instability domain for the first mode ceases to be simply connected and splits into two parts
corresponding to single-mode and coupled flutter. As Ly continues to decrease, the single-mode flutter
domain shrinks to a point and disappears; the coupled flutter domain continues to move towards higher
values of Lx. For the other modes, the flutter domains also shrink and disappear, and the Mach numbers
corresponding to instability also increase.

These results are compared with the results obtained by the piston theory, and it is shown that
this theory does not permit discovering single-mode flutter, because its description of the aerodynamic
problem is qualitatively false for small Mach numbers (M < 1.7). At the same time, the results of
calculations by the exact and piston theories practically coincide for large M .

The results of calculations of single-mode flutter are comparable with the asymptotic theory, which
qualitatively agrees with the calculations and explains the increase in the Mach number corresponding
to the instability as Ly decreases.
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