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Panel flutter is a dangerous aeroelastic instability of the skin panels of supersonic
flight vehicles. Though the linear stability of panels in uniform flow has been
studied in detail, the influence of the boundary layer is still an open question.
Most studies of panel flutter in the presence of the boundary layer are devoted
to the (1/7)th-power velocity law and yield a stabilising effect of the boundary
layer. Recently, Vedeneev (J. Fluid Mech., vol. 736, 2013, pp. 216–249) considered
arbitrary velocity and temperature profiles and showed that, for a generalised convex
boundary layer profile, a decrease of the growth rates of ‘supersonic’ perturbations
(responsible for single-mode panel flutter) is accompanied by destabilisation of
‘subsonic’ perturbations that are neutral in uniform flow. However, this result is not
self-consistent, as the long-wave expansion for solutions of the Rayleigh equation
was used, whereas subsonic perturbations, generally speaking, cannot be considered
as long waves. More surprising results are obtained for the boundary layer profile
with a generalised inflection point, where the effect of the layer is destabilising
even for ‘supersonic’ perturbations, and such waves can also have short lengths. In
order to overcome this inconsistency, in this paper, we solve the Rayleigh equation
numerically and investigate the stability of short-wave perturbation of the elastic
plate in the presence of the boundary layer. As before, two problem formulations are
investigated. First, we study running waves in an infinite plate. Second, we analyse
eigenmodes of the plate of large finite length and use Kulikovskii’s global instability
criterion. Based on the results of calculations, we confirm that the effect of the
boundary layer with a generalised inflection point can be essentially destabilising. On
the other hand, for generalised convex boundary layers, calculations show that, unlike
the prediction of the long-wave approximation, the finite plate is fully stabilised for
sufficiently thick boundary layers.
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1. Introduction
The flutter of the skin panels of flight vehicles is a dangerous phenomenon leading

to high-amplitude vibrations of panels, their fatigue and possible failure. From a
theoretical point of view, the problem lies in the instability of elastic plates or shells
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moving in air (or being in air) with supersonic speeds. As a rule, uniform air flow
over the plate is considered, and the boundary layer is neglected. Intensive studies
of this problem were conducted in the 1950s–1970s and summarised in reviews
by Bolotin (1963), Dowell (1974) and Novichkov (1978). During the last decade,
renewed interest in panel flutter has arisen due to new computational techniques
devoted to nonlinear limit-cycle oscillations (Mei et al. 1999), use of new materials
for skin panels (Zhou et al. 1995; Duan et al. 2003) and unsteady aerodynamic
models suitable for transonic and low supersonic flight conditions (Bendiksen &
Davis 1995; Gordnier & Visbal 2002; Vedeneev 2012, 2013a; Shishaeva et al. 2015).

While the stability of elastic panels in uniform flows has been studied more or less
in detail, the effect of the boundary layer still remains an open question. The only
experimental studies by Muhlstein et al. (1968) and Gaspers et al. (1970) devoted
specifically to the boundary layer influence on panel flutter showed that it has
a stabilising effect, namely, critical dynamic pressure increases when the boundary
layer is thicker. Theoretical studies (Miles 1959; Dowell 1971, 1973; Hashimoto et al.
2009; Visbal 2014; Alder 2015, 2016) were devoted to panel flutter in the presence
of the boundary layer with the (1/7)th-power velocity law (or similar), representing
a typical turbulent boundary layer profile. However, two common shortcomings of
those papers can be pointed out. First, the boundary layer profile for arbitrary flow
conditions and panel locations can essentially differ from the (1/7)th-power law.
Second, panel flutter can occur in two distinct forms, coupled-mode and single-mode
flutter (Vedeneev 2012). They have different physical mechanisms, so that their
responses to the presence of the boundary layer are also different. It is also known
that nonlinear development of single-mode and coupled-mode flutter yields different
types of limit-cycle oscillations (Vedeneev 2007, 2013c; Shishaeva et al. 2015). In
the studies cited above, flutter type was not distinguished, so it is not clear which
one was examined for boundary layer effect.

Recently, Vedeneev (2013b) performed asymptotic analysis of the problem for
long plates in an inviscid shear layer with supersonic mean flow, when the plate
length L→∞ and the Reynolds number Re→∞. He showed that the action of
the boundary layer on the coupled-mode flutter of a plate is as follows. It has
a stabilising effect in the case of a flutter, i.e. the growth rate of the fluttering
mode decreases, but it destabilises the plate in the case of stability in uniform flow.
The action of the boundary layer on a single-mode flutter is more complex and
depends on the boundary layer profile. Eigenmodes of the plate are split into two
groups, supersonic and subsonic modes, which exhibit different behaviours due to
the presence of the boundary layer. Namely, for generalised convex boundary layer
profiles, supersonic modes are stabilised (growth rates decrease), while subsonic
modes are destabilised. Instability of subsonic eigenmodes due to the boundary layer
is similar to the destabilising effect of the boundary layer found by Miles (2001) in
an incompressible fluid. For profiles with a generalised inflection point, supersonic
modes are destabilised for small boundary layer thickness δ and stabilised for large
thickness δ, while subsonic modes are damped.

To analyse the problem, Vedeneev (2013b) used the global instability criterion
of Kulikovskii (1966) and reduced the problem to the behaviour of waves in an
infinite plate. Since the coupled-mode flutter of a finite-length plate is governed by
long waves with wavenumber k ∼ µ1/3, where µ is the ratio of the flow density
to the plate material density and considered as a small parameter, he used the first
term of the Heisenberg expansion for solving the Rayleigh equation. The same
expansion was used for the analysis of single-mode flutter, which is governed by
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FIGURE 1. Gas flow over an elastic plate.

short waves, k � µ1/3. However, first-term Heisenberg expansion can be used only
for k� 1/δ, so the results obtained for single-mode flutter are valid only for small
boundary layer thickness δ.

In this paper, we re-examine the action of the boundary layer on single-mode
flutter and remove the limit of small δ by using the numerical solutions of the
Rayleigh equation. In § 2, we describe the formulation of the problem. In § 3, we
prove that plate waves travelling upstream are damped, and the waves travelling
downstream faster than the free-stream flow are either neutral or damped. The
rest of the paper is devoted to waves travelling downstream that are slower than
the free-stream flow, since they and only they can result in instability. In § 4, we
discuss the closed-form solution of Vedeneev (2013b) and its limitation and describe a
numerical method for solving the Rayleigh equation and dispersion relation. Section 5
is devoted to an analysis of waves in infinite plates and the comparison of growth
rates obtained through first-term Heisenberg expansion and the numerical solution of
the full Rayleigh equation. Finally, in § 6, we investigate the effect of the boundary
layer on single-mode flutter of finite plates.

2. Formulation of the problem and the dispersion relation

We consider the stability of an elastic plate in a shear gas flow (figure 1). The
flow represents the boundary layer over the plate surface, and its undisturbed velocity
and temperature profiles, u0(z) and T0(z), respectively, are given. The problem is
investigated in a two-dimensional formulation (all variables do not depend on y);
also, we neglect the growth of the boundary layer so that the unperturbed flow does
not depend on x. All variables are assumed to be non-dimensional, with the speed of
sound and temperature of the flow outside the boundary layer taken as the velocity
and temperature scales, the plate thickness as the length scale, and plate material
density as the density scale.

The plate motion is governed by the Kirchhoff–Love small-deflection plate theory.
In a dimensionless form, the plate equation is as follows:

D
∂4w
∂x4
−M2

w
∂2w
∂x2
+ ∂

2w
∂t2
+ p(x, 0, t)= 0, (2.1)

where w(x, t) is the plate deflection, D is the dimensionless plate stiffness, Mw is
the square root of the dimensionless in-plane tension force, and p(x, z, t) is the flow
pressure disturbance induced by the plate motion, such that p is a function of w.

Let us consider a plate of infinite length (finite plates will be studied in § 6).
Since neither plate nor flow properties depend on x, this admits perturbations of a
travelling-wave type that govern the stability of the system. Let w(x, t)= ei(kx−ωt) and
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p(x, z, t) = p(z)ei(kx−ωt) be the perturbations of the plate deflection and the flow
pressure (note that, due to the linearity of the stability problem, we may assume the
deflection amplitude to be unity). Substitution into (2.1) yields the dispersion relation

D(k, ω)=Dk4 +M2
wk2 −ω2 + p(0)= 0. (2.2)

Since the pressure p(0) is induced by the plate, we need to express it through the
plate deflection to obtain a closed dispersion relation.

To calculate the pressure perturbation, we assume that the flow viscosity is essential
only in the formation of the steady boundary layer as a non-uniform distribution
of velocity and temperature, but the flow perturbations are considered inviscid.
Namely, we neglect the viscous and temperature perturbations of the boundary layer,
assuming that the Reynolds number Re → ∞ in the equations for perturbations.
These equations are then converted into the inviscid Rayleigh equation (Lees & Lin
1946). This assumption is suitable for laminar boundary layers at high Reynolds
numbers, which are observed in experiments up to Re∼ 105 for the Reynolds number
based on the boundary layer thickness (Gaponov & Maslov 1980). In the case of
turbulent boundary layers, this assumption can be used as the first approximation if
the characteristic frequencies of the turbulent fluctuations are much higher than the
frequency of growing plate oscillations.

Let v(z)ei(kx−ωt) be the perturbation of the vertical flow velocity component. Then,
the compressible Rayleigh equation (Lees & Lin 1946) takes the following form:

d
dz

(
(u0 − c) dv/dz− v du0/dz

T0 − (u0 − c)2

)
− 1

T0
k2(u0 − c)v = 0, (2.3)

where c=ω/k is the phase speed of the wave. When v(z) is found, the amplitude of
the pressure perturbation is expressed through v(z) as follows:

p(z)= µ
ik
(u0 − c) dv/dz− v du0/dz

T0 − (u0 − c)2
, (2.4)

where µ is the dimensionless density of the flow outside the boundary layer. We will
assume that µ is a small parameter, as, for all solid material plates and flow conditions
available in applications, it has an order of 0.001 or less.

The boundary conditions for the Rayleigh equation are as follows. First, at the plate
surface z= 0, the impenetrability condition must be satisfied. Since the plate shape is
w(x)= ei(kx−ωt), we obtain

v(0)= ∂w
∂t
+ u0(0)

∂w
∂x
=−iω, z= 0. (2.5)

Second, the radiation condition must be satisfied as z→+∞. We will assume that
the flow profile outside the boundary layer is constant, i.e. u0 ≡ M, and T0 ≡ 1 for
z> δ, where M > 1 is the free-stream Mach number. This admits transference of the
radiation condition from infinity to z= δ in the following way. For z>δ, the Rayleigh
equation (2.3) is an equation with constant coefficients. Its solution satisfying the
radiation condition is an exponent v(z) = Ceγ z, γ = −√k2 − (M∞k−ω)2, where the
square root branch is chosen so that Re γ <0 for Imω�1. At z= δ, this solution must
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be matched with the solution inside the boundary layer. The matching condition is

v(z)=Ceγ z,
dv(z)

dz
=Cγ eγ z, z= δ, (2.6a,b)

which after excluding C transforms to

1
v

dv
dz
= γ , z= δ. (2.7)

Thus, to calculate the pressure p(0) in (2.2), we have to solve the Rayleigh equation
(2.3) with boundary conditions (2.5) and (2.7), and then use the expression (2.4).

Collecting all the assumptions made throughout this section, we

(1) investigate the problem in 2D formulation, neglecting the growth of the boundary
layer,

(2) neglect viscous and temperature perturbations of the boundary layer (Re→∞),
and use the inviscid compressible Rayleigh equation,

(3) assume that the flow outside the boundary layer is uniform, and assign the second
boundary condition for the Rayleigh equation at z= δ (not at z=∞), and

(4) consider the dimensionless density of the flow outside the boundary layer µ as
a small parameter, which is suitable for most applications.

When µ= 0, i.e. the flow is absent, solutions ω(k) of the dispersion relation (2.2)
are real and correspond to bending plate waves. If µ 6= 0, but δ = 0, i.e. the flow is
uniform, the downstream-travelling wave is growing for 0<Re c<M− 1, neutral for
M− 1<Re c<M+ 1 and damped for Re c>M+ 1 (Vedeneev 2005). The thresholds

Re c=M ± 1 ⇐⇒ kM±1 =
√
(M ± 1)2 −M2

w

D
(2.8)

correspond to waves travelling with the speed of the acoustic perturbations of the flow.
Upstream-travelling waves, Re c < 0, are always damped. Now, let us consider the
influence of the shear layer, i.e. assume that δ 6= 0.

3. Waves with phase speed Re c>M or Re c< 0

In this section, we analytically prove that waves of phase speeds Re c > M or
Re c < 0 are either neutral or damped so that they cannot result in instability. This
was proved by Vedeneev (2013b) using long-wave expansion for the solutions of the
Rayleigh equation (2.3), i.e. that proof is valid for wavelengths λ� δ. In this section,
we prove this for arbitrary wavelengths. The other case, 0 < Re c < M, is studied
numerically in the next sections.

3.1. Case M<Re c<M + 1
For neutral waves with real phase speeds M < c<M + 1, the flow does not have a
critical point zc (i.e. the point where u0(zc)= c), and solutions of the Rayleigh equation
(2.3) are regular. Also, γ ∈R in the boundary condition (2.7). Substitution v(z)= iṽ(z)
results in a real boundary condition for ṽ(z):

ṽ(0)=−ω, z= 0,
1
ṽ

dṽ
dz
= γ , z= δ. (3.1a,b)
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Since ṽ(z) also satisfies the Rayleigh equation, which is regular, we conclude that
ṽ(z) ∈R. This means that the pressure (2.4) p(z) ∈R.

As µ is a small parameter, p(0) gives a small real correction for the solution of
(2.2). Namely, using Taylor expansion, we obtain

ω(k, µ)=ω(k, 0)+µ ∂ω
∂µ

∣∣∣∣
µ=0

+ o(µ) = ω(k, 0)−µ∂D
∂µ

/
∂D

∂ω

∣∣∣∣
µ=0

+ o(µ)

= ω(k, 0)+ µ

2ω(k, 0)
∂p(0)
∂µ

∣∣∣∣
µ=0

+ o(µ). (3.2)

We conclude that ω(k, µ) is real, i.e. the wave stays neutral in the presence of the
boundary layer.

3.2. Case Re c>M + 1
In this case, for real c, there is also no critical point, so that the solutions of the
Rayleigh equation (2.3) are regular, but γ is now purely imaginary (namely, γ = iγ̃ ,
γ̃ > 0), i.e. p(0) 6∈R, and, as can be seen from (3.2), ω(k, µ) 6∈R. Let us prove that
Imω(k, µ) < 0, i.e. the wave is damped. Using (3.2), it is sufficient to prove that
Im p(0) < 0.

We will study two cases. The first is a non-zero denominator in (2.3), i.e.
T0(z)− (u0(z)− c)2 6= 0, 0 6 z 6 δ. This means that the Rayleigh equation is regular.
The other case is the existence of a point za where T0(za) − (u0(za) − c)2 = 0. This
point is a removable singularity of the Rayleigh equation (Lees & Lin 1946).

Let us assume the first case. Consider two real linearly independent solutions v1(z)
and v2(z) of (2.3), satisfying conditions

v1(0)= 1, v′1(0)= 0, v2(0)= 0, v′2(0)= 1. (3.3a,b)

Then the general solution can be expressed as

v(z)= c1v1(z)+ c2v2(z). (3.4)

Satisfying (2.5) and (2.7), we obtain

c1 =−iω, c2 = iω
γ v1(δ)− v′1(δ)
γ v2(δ)− v′2(δ)

. (3.5a,b)

Now consider pressure

p(z)= c1p1(z)+ c2p2(z), (3.6)

where pj and vj are connected through (2.4). Since c1 is purely imaginary, and v1 is
real, we conclude that c1p1(z) ∈R. Then

Im p(0)= Im(c2p2(0)). (3.7)



534 V. Bondarev and V. Vedeneev

Using (2.4) gives

p2(0)= µik
−c

T0(0)− c2
= iP, P< 0, (3.8)

where the last inequality is obtained by assuming that the denominator T0(z)− (u0(z)−
c)2 6= 0, and taking into account that, at z= δ, it equals 1− (M − c)2 < 0.

Finally, using (3.5b) and (3.8), we obtain

Im p(0) = Im
(
−Pω

iγ̃ v1(δ)− v′1(δ)
iγ̃ v2(δ)− v′2(δ)

)
= Im

(
−Pω

(iγ̃ v1(δ)− v′1(δ))(−iγ̃ v2(δ)− v′2(δ))
γ̃ 2v2

2(δ)+ v′22 (δ)
)

= Pωγ̃
(v1(δ)v

′
2(δ)− v2(δ)v

′
1(δ))

γ̃ 2v2
2(δ)+ v′22 (δ)

= Pωγ̃
γ̃ 2v2

2(δ)+ v′22 (δ)
W(v1, v2)(δ). (3.9)

Here, W(v1, v2) is the Wronskian of v1 and v2. As v1 and v2 are linearly independent,
W(v1, v2)(z) 6= 0 for any z. Also, W(v1, v2)(0) = 1; therefore, we conclude that
W(v1, v2)(δ) > 0, and, finally, Im p(0) < 0.

Now, assume the second case, i.e. there exists a point za such that T0(za)− (u0(za)−
c)2 = 0. In this case, P> 0, since the denominator in (2.4) changes its sign at z= za.
Rewrite W(v1, v2) in the following form:

(u0 − c)W(v1, v2) = (u0 − c)(v1v
′
2 − v2v

′
1)

= ((u0 − c)v′2v1 − u′0v2v1)− ((u0 − c)v′1v2 − u′0v1v2)

= v1((u0 − c)v′2 − u′0v2)− v2((u0 − c)v′1 − u′0v1). (3.10)

Since za is a removable singularity, the numerator in the first term of (2.3) is zero at
z= za for both v= v1(z) and v2(z). Hence, both terms on the right-hand side of (3.10)
are zero at z = za. As u0(za) − c 6= 0, W(v1, v2)(za) = 0, i.e. the Wronskian changes
its sign at z= za. Given that W(v1, v2)(0)= 1, we conclude that W(v1, v2)(δ) < 0, and
Im p(0) < 0, which finalises the proof of Imω(k, µ) < 0.

3.3. Case Re c< 0
The case of upstream-travelling waves is reduced to the previous case with the
following changes. First, γ̃ < 0. Second, since c is negative, P changes its sign.
Third, ω(k, 0) < 0, hence Im p(0) > 0, and, due to (3.2), Imω< 0.

Note that, for k∼µ1/3 or less, ω(k, 0)∼µ2/3, and the expansion (3.2) is not valid
any more since p(0) and other terms in (2.2) are of the same order. However, in this
case, we can use the long-wave expansion of the dispersion relation in the form of
equation (5.7) of Vedeneev (2013b):

Dk4 +M2
wk2 −ω2 − µωk

iaω− δbk2
= 0, a> 0, b> 0. (3.11)
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Assuming k ∈ R, ω = ωr + iωi, ωr < 0, and taking the imaginary part of (3.11), we
find that

2ωrωi =µk
a(ω2

r +ω2
i )+ωiδk2

(aωi + δbk2)2 + aω2
r

. (3.12)

This equality is not satisfied if ωi > 0; therefore, ωi = Imω< 0.

4. Methods for solving the Rayleigh equation and dispersion relation
In the previous section, we proved that waves with phase speed Re c<0 or Re c>M

are either neutral or damped. Hence, only waves with 0< Re c<M can be growing.
Let us now consider such waves.

We will use three approaches for solving the Rayleigh equation, finding p(0) and
then solving the dispersion relation (2.2). The first approach, which we will refer to
as ‘analytical’, was used by Vedeneev (2013b). Though it admits general investigation
of the wave behaviour, it is not valid for short waves. The second approach, which
we will refer to as ‘numerical’, consists in numerical solution of both the Rayleigh
equation and the dispersion relation. Obviously, it is valid for arbitrary wavelengths;
we will use it for analysis of short-wave behaviour. The third, intermediate approach,
which we will call ‘semi-analytical’, consists in analytical solution of the Rayleigh
equation (similar to the ‘analytical’ approach), but a numerical solution of the
dispersion relation. This approach will be used as a connection between analytical
and numerical results.

4.1. Analytical solution for ‘short’ waves
The solution of the Rayleigh equation can be written in the form of a series in
k2, known as the Heisenberg expansion (Drazin & Reid 2004). Vedeneev (2013b)
considered the first term of this expansion, which is valid for k � 1/δ, i.e.
for wavelengths that are much longer than the boundary layer thickness. Such
consideration is equivalent to neglecting the second term of order k2 in (2.3). When
this term is omitted, (2.3) is solved in a closed form. Satisfying boundary conditions
(2.5) and (2.7), he obtained the pressure in the form

p(0)=−µ
((

(Mk−ω)2√
k2 − (Mk−ω)2

)−1

+ δ
(∫ 1

0

T0(η) dη
(u0(η)− c)2

− 1
))−1

, (4.1)

where η= z/δ is the inner boundary layer coordinate, and c=ω/k is the phase speed.
Here, the first term in parentheses represents the contribution of the uniform flow
outside the boundary layer, while the second term represents the contribution of the
boundary layer. Substitution in (2.2) yields the dispersion relation

D(k, ω) = (Dk4 +M2
wk2 −ω2)

−µ
((

(Mk−ω)2√
k2 − (Mk−ω)2

)−1

+ δ
(∫ 1

0

T0(η) dη
(u0(η)− c)2

− 1
))−1

= 0. (4.2)

As δ→ 0, the dispersion relation (4.2) coincides with the dispersion relation for a
plate in uniform flow (Kornecki 1979; Vedeneev 2005).

A closed-form solution of the dispersion relation (4.2) can be obtained if an
additional condition is satisfied: wavenumber k� µ1/3, i.e. the wave is not too long.
This condition means that the order of the first term in (4.2) is larger than the
second, i.e. the wave is mostly governed by the plate, while the flow gives just a
small correction of the order of µ. Under this condition, the Taylor expansion of the
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solution of (4.2) in µ gives the following (similar to (3.2)):

ω(k, µ) = ω(k, 0)− µ

2ω(k, 0)

×
((

(M∞k−ω)2√
k2 − (M∞k−ω)2

)−1

+ δ
(∫ 1

0

T0(η) dη
(u0(η)− c)2

− 1
))−1

, (4.3)

where the expression in parentheses is calculated at µ= 0. Here, the first term ω(k, 0)
is a frequency of the plate in vacuum, while the second term of order µ is a small
frequency correction due to the flow.

Note that, for solution (4.3), both conditions k � µ1/3 and k � 1/δ must be
satisfied, i.e. the wavelengths are bounded both above and below. Such waves were
called ‘short’ (in quotation marks) (Vedeneev 2013b) since they do not include shorter
wavelengths, k & 1/δ. Let us consider numerical methods for solving the Rayleigh
equation and the dispersion relation, which are valid for waves of arbitrary length.

4.2. Numerical solution for arbitrary wavelengths
In order to overcome the restriction k � 1/δ and consider arbitrary wavelengths,
we solve the Rayleigh equation numerically through the Runge–Kutta method. The
difficulty associated with logarithmic singularity at the critical point is eliminated by
solving the equation along a path in the complex z-plane. Namely, the algorithm is
as follows.

(1) For a given velocity profile u0(z), we find the critical point zc as a root of the
equation u0(z)= c.

(2) If the critical point exists, i.e. 0 < Re zc < δ, then according to Lin’s rule, this
point must be passed below in the complex z-plane in order to obtain a solution
that is a limit of the viscous solution as Re→∞ (vanishing viscosity) (Drazin &
Reid 2004). In order to enforce this rule, we choose a smooth path passing below
the critical point in the complex z-plane. If Im zc is positive and not too close to
zero (namely, Im zc > δ/2), then the path is a real segment [0; δ]. Otherwise, the
path is complex, as shown in figure 2. Note that, for small positive Im zc, the
equation can be integrated along the real segment, but we still use the complex
path to avoid numerical difficulties due to the closeness of the critical point,
which is a point of singularity for the Rayleigh equation.

(3) The boundary value problem is reduced to two initial value problems by the
standard shooting method. They are both solved along the chosen path through
the Runge–Kutta method. The velocity perturbation v(z) and its derivative
dv(z)/dz are found.

(4) Finally, by using formula (2.4), we calculate the unsteady pressure p(0) on the
plate surface.

For solving the dispersion equation (2.2), we use the following iterative procedure.
We let the wavenumber k be given, and we search ω(k), satisfying the dispersion
equation. In the first step, ω1 equals the natural frequency of the plate in vacuum:

ω1 =
√

Dk4 +M2
wk2. (4.4)

Now, let us have nth iteration, ωn. We numerically solve the Rayleigh equation and
calculate the unsteady pressure p(0, ωn) according to the procedure described above.
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FIGURE 2. Integration path chosen for solving the Rayleigh equation for the velocity
profile u0(η) = M sin(πη/2), M = 1.6 and c = 0.5 − 0.33i. The critical point is zc ≈
0.20− 0.14i, δ = 1.

Then, we put

ωn+1 =
√

Dk4 +M2
wk2 + p(0, ωn). (4.5)

Iterations are repeated until the desired accuracy is achieved, i.e. |D(k, ωn)|< ε.
A convergence study shows that N = 3000 points is enough for discretising the

Rayleigh equation along the integration path to get an accurate solution through the
Runge–Kutta method. For the iterative solution of the dispersion relation, ε = 10−10

gives a well-converged solution ω(k) for all wavenumbers k considered in the
examples below.

4.3. Semi-analytical solution for ‘short’ and long waves

The analytical solution is not applicable in the case of very long waves, k ∼ µ1/3,
since the expressions in the first and second parentheses in (4.2) have the same order,
and the Taylor expansion (4.3) is not valid. In this paper, we are interested in the
role of the second term of the Rayleigh equation, which is essential for k & 1/δ.
However, depending on the particular boundary layer profile, the latter segment can
overlap the range k ∼ µ1/3, i.e. there can be no range of wavenumbers where the
analytical solution is valid. In this case, instead of an analytical approach, we use
a ‘semi-analytical’ approach, which consists in the following. We use the dispersion
relation (4.2), i.e. neglect the second term in the Rayleigh equation. However, instead
of using the Taylor expansion (4.3), the dispersion relation is solved numerically in
the same manner as in the numerical approach. Frequencies ω(k) obtained through
the semi-analytical approach are valid for k� 1/δ, without any restriction for small k.
Comparison of semi-analytical and numerical results will show the role of the second
term in the Rayleigh equation for very short waves, k & 1/δ.
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5. Results: waves in an infinite plate
Since the cases of waves with Re c > M and Re c < 0 are already excluded from

possibly unstable waves (§ 3), we restrict our analysis to the waves with phase speeds
0<Re c<M.

5.1. Generalised convex boundary layer profiles
We will call the boundary layer profile with (u′0/T0)

′< 0 for z∈ [0; δ] the generalised
convex profile. Analysing a solution (4.3), Vedeneev (2013b) proved that, for such
profiles, the action of the boundary layer on the wave is as follows.

(1) If the wave is growing for δ = 0 (i.e. 0< Re c<M − 1, the wave is supersonic
with respect to the mean flow), then it stays growing for δ 6= 0, but the growth
rate monotonically decreases towards zero when δ increases.

(2) If the wave is neutral for δ = 0 (i.e. M − 1 < Re c < M, the wave is subsonic
with respect to the mean flow), then for δ 6= 0 it starts growing. When δ
increases, the growth rate first increases, achieves its maximum at δ = δm and
then monotonically decreases towards zero.

These results were obtained with the second term in the Rayleigh equation
neglected, i.e. very short waves were not considered. Now, let us investigate the
influence of this term.

Consider as an example the velocity profile

u0(z)=M sin
(π

2
z
δ

)
(5.1)

for parameters M = 1.6 and

D= 23.9, Mw = 0, µ= 0.00012, γ = 1.4, (5.2a−d)

which correspond to an untensioned steel plate at 3000 m, or an aluminium plate at
11 000 m above sea level. For simplicity, in all examples hereafter, we will assume
that the Prandtl number Pr= 1 and the plate is heat-insulated, so that the temperature
profile T0(u0) is given by the same expression as in an adiabatic flow (Schlichting
1960):

T0(u0)= 1+ γ − 1
2

(M2 − u2
0). (5.3)

The boundary layer profile (5.1) and (5.3) is shown in figure 3.
First, let us show that this boundary layer is stable itself (i.e. over the rigid plate)

in the inviscid approximation. Indeed, the stability criterion of subsonic disturbances
(i.e. disturbances with the phase speed c>M − 1) is as follows (Lees & Lin 1946):
the profile must be generalised convex in the subsonic part of the layer, i.e.(

u′0(z)
T0(z)

)′
< 0, z> zs, (5.4)

where u0(zs) = M − 1. This function is plotted in figure 4(a); clearly, the stability
condition is satisfied. Next, for supersonic long-wave disturbances, Vedeneev (2013b)
showed that the stability criterion is as follows:

Re B(c) < 0, 0< c<M − 1, (5.5)
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FIGURE 3. Stable generalised convex boundary layer profile (5.1) and (5.3).
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FIGURE 4. (a) Generalised curvature and (b) Re B(c) for the boundary layer profile (5.1)
and (5.3).

where

B(c)=
∫ 1

0

T0(η) dη
(u0(η)− c)2

− 1. (5.6)

It is seen in figure 4(b) that the stability condition for supersonic disturbances is also
satisfied, so that the boundary layer profile (5.1) and (5.3) is indeed stable.

Now, let us consider the influence of the second term in the Rayleigh equation on
the travelling waves. Calculated growth rate versus the boundary layer thickness,
Imω(δ), is plotted for a range of wavenumbers k in figure 5. For ‘moderate’
wavelengths, 0.05 6 k 6 0.1, there is an excellent agreement between the numerical,
analytical and semi-analytical solutions. This range of wavenumbers corresponds
to waves growing in uniform flow, i.e. k < kM−1 = 0.123 (hereafter, index M − 1
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FIGURE 5. Growth rates Imω(δ) for waves that are (a) growing and (b–d) neutral in
uniform flow. The boundary layer profile is given by (5.1) and (5.3). The thin continuous,
dashed and thick continuous lines represent analytical, semi-analytical and numerical
solutions, respectively.

or M means the value of the phase speed c(k) for the given wavenumber). For
k 6 0.025, the analytical solution shows a significant discrepancy with numerical
and semi-analytical results, since the condition k� µ1/3 is not valid, and the Taylor
expansion (4.3) cannot be used. However, the semi-analytical and numerical solutions,
which do not use the Taylor expansion, are still in excellent agreement with each
other.

For k > 0.125, a significant difference between numerical and analytical solutions
appears due to the influence of the second term in the Rayleigh equation. The results
presented in figure 5 cover the full range of kM−1 < k < kM = 0.327 and yield two
corrections due to this term. First, the actual maximal growth rates are higher than
predicted by analytical theory. The higher the value of k, the higher the relative
increase of max Imω(δ) due to the second term. Second, the maximum growth rate
is achieved at a smaller boundary layer thickness.
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We have checked several other generalised convex boundary layer profiles, including
(5.1) with M = 1.3 and 2.0. In all cases, the results are similar to those plotted in
figure 5, and the short-wave effect of the second term in the Rayleigh equation
resulted in an increase of the growth rates in all cases where this effect was visible.

We conclude that the destabilisation of neutral waves with M− 1< c<M due to the
boundary layer, initially predicted by analytical theory (Vedeneev 2013b), is confirmed
by the numerical solution of the full Rayleigh equation. Moreover, the growth rates
turn out to be higher than the analytical theory predicts.

5.2. Boundary layer profile with a generalised inflection point
Now, let us investigate the boundary layer profile with a generalised inflection point
zi, where (u′0/T0)

′ = 0. In subsonic flow, such a profile would be unstable, since the
existence of the generalised inflection point is a necessary and sufficient condition
for the inviscid instability of subsonic disturbances (Lees & Lin 1946). However, in
supersonic flow, there exist profiles such that the generalised inflection point is located
in the supersonic part of the boundary layer, i.e. u0(zi) <M− 1. This means that, on
the one hand, subsonic disturbances are damped, since the criterion (5.4) is satisfied.
On the other hand, supersonic disturbances can also be damped, since their stability
condition (5.5) has no relation to the generalised inflection point. Consequently, such
a profile can be stable and therefore can exist in real flows.

For such boundary layer profiles, studying the analytical solution, Vedeneev (2013b)
proved that the action of the boundary layer on the wave is as follows.

(1) If the wave is growing for δ = 0 (i.e. 0< Re c<M − 1), then it stays growing
for 0 < δ < δ1, such that the growth rate is higher than in uniform flow. For a
thicker boundary layer, δ1 <δ < δ2, the wave is still growing, but the growth rate
is lower than in uniform flow. Finally, in thick boundary layers, δ > δ2, the wave
becomes damped.

(2) If the wave is neutral for δ= 0 (i.e. M− 1<Re c<M), then for δ 6= 0 it begins
to grow. The behaviour of such waves is similar to those in generalised convex
boundary layers.

Let us now consider numerical results. As an example, we use the following
velocity profile:

u0(z)=M
(

1−
(

1− z
δ

)2.4
)
× cos

(
0.7
(

1− z
δ

)7
)7

(5.7)

for M = 1.3, parameters (5.2a–d) and the temperature profile (5.3), which is shown
in figure 6. Though the velocity profile (5.7) looks sophisticated, it just represents
the function with one generalised inflection point located in the supersonic part of
the layer. Let us show that this boundary layer is stable in inviscid approximation.
First, shown in figure 7(a) is the generalised curvature (u′0/T0)

′. It is negative for z>
zi = 0.133 and u0(zi) = 0.298 < 0.3 =M − 1, i.e. the condition (5.4) is satisfied and
subsonic disturbances are damped. Second, Re B(c) shown in figure 7(b) is negative
for c<M − 1, i.e. the condition for supersonic disturbances (5.5) is also satisfied so
that they are also damped.

As we did before, we calculated growth rates Imω(δ) for a range of wavenumbers.
Results for k < kM−1 = 0.061, which correspond to growing waves in uniform flow,
are shown in figure 8(a). It is seen that there is a good agreement between the semi-
analytical and numerical results. For k= 0.05, the analytical results are close, but for
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FIGURE 6. Stable boundary layer profile with generalised inflection point (5.3) and (5.7).
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FIGURE 7. (a) Generalised curvature and (b) Re B(c) for the boundary layer profile (5.3)
and (5.7).

smaller k they are essentially different, since k ∼ µ1/3 and Taylor expansion is not
applicable for such small wavenumbers. It is seen that, despite the short-wave effect
not being pronounced, the growth rates obtained numerically through the full Rayleigh
equation are slightly higher than those obtained in the semi-analytical approximation.

For kM−1 < k < kM = 0.266 (figure 8b–d), the waves are neutral in uniform flow
but begin to grow due to the boundary layer. The results for the analytical and semi-
analytical approximations coincide, since the wavenumber is high enough, and the
Taylor expansion works well. However, the numerical solution is essentially different,
since the term of order k2 in (2.3) becomes essential. It is clearly seen that, for all k,
the actual growth rates are significantly higher than predicted by the analytical theory.
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FIGURE 8. Growth rates Imω(δ) for waves that are (a) growing, (b–d) neutral in uniform
flow. The boundary layer profile is given by (5.3) and (5.7). The thin continuous, dashed
and thick continuous lines represent the analytical, semi-analytical and numerical solutions,
respectively.

We conclude that, as well as for generalised convex boundary layer profiles, in all
cases where the short-wave effect is visible, it results in a higher growth rate than
predicted analytically. In other words, the boundary layer is even more destabilising
than the long-wave approximation predicts.

6. Single-mode flutter of finite plates
In this section, we investigate the stability of finite plates and the influence of

the boundary layer on the stability. This problem was studied by Vedeneev (2013b)
with the k2 term of the Rayleigh equation neglected, i.e. only long-wave eigenmodes
were studied. Here, we consider the effect of short waves, solving the full Rayleigh
equation. We assume that the plate length is large so that the criterion of global
instability of Kulikovskii (1966) can be applied. According to this criterion, each
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eigenmode can be represented as a superposition of two plate waves running upstream
and downstream, and each of them is transformed to the other on reflection from
the boundary. The analysis of a finite-length plate is then reduced to the study of
infinite-plate waves, and the stability criterion does not depend on the boundary
conditions at the plate edges (say, clamped or pinned edges). Comparison of the
results obtained through Kulikovskii’s criterion for plates in uniform flow with
solutions of the full eigenvalue problem (Vedeneev 2012) shows that the results are
reliable for dimensionless plate lengths (i.e. plate length rated to the plate thickness)
L> 150. It is expected that results obtained for the boundary layer flow are valid for
the same plate lengths.

Panel flutter of finite plates can be of two types, coupled-mode and single-mode
flutter (Dowell 1974). From the point of view of asymptotic theory as L→∞, they
occur due to the interaction of the same downstream-travelling wave with different
upstream-travelling waves (Vedeneev 2005). It has been proved (Vedeneev 2005,
2012) that coupled-mode panel flutter occurs for long interacting waves (k ∼ µ1/3),
which is why the use of the long-wave approximation of the Rayleigh equation
(Vedeneev 2013b) for analysis of the boundary layer influence on coupled-mode
flutter is correct. However, single-mode panel flutter can occur in higher modes with
relatively short lengths (Vedeneev 2012; Shishaeva et al. 2015), and the use of the
long-wave approximation is not justified. That is why here we restrict ourselves to the
analysis of the single-mode flutter of finite plates through the full Rayleigh equation.

6.1. Global instability criterion
The stability criterion for systems of large finite length is generally different from the
criterion for an infinite system, as shown by Kulikovskii (1966). In order to formulate
this criterion, let us number the spatial roots kj(ω) of the dispersion relation for an
infinite plate in the order of decrease of Im kj(ω) for Imω� 1:

Im k1 > · · ·> Im ks > 0> Im ks+1 > · · ·> Im kN . (6.1)

Then, we split all roots into two groups: the first is such that Im kj(ω)>0, j=1, . . . , s;
and the second is such that Im kj(ω) < 0, j= s+ 1, . . . , N as Imω→+∞. The first
and second groups of roots correspond to spatial waves travelling downstream and
upstream, respectively.

Kulikovskii (1966) has proved that, as the length of the system L → ∞, its
eigenvalues tend to the curve Ω in the ω-plane defined by the following equation:

Im kp(ω)= Im kq(ω), p ∈ 1, . . . , s, q ∈ s+ 1, . . . ,N. (6.2)

Hence, the instability criterion of large finite systems is as follows: the system is
unstable if a piece of the Ω curve is located in the Imω> 0 half-plane.

Let us apply this criterion to the problem of a plate in a boundary layer flow. In this
case, there are four spatial roots of (2.2): k1 and k2 correspond to the waves travelling
downstream, and k3 and k4 correspond to the waves travelling upstream. The piece of
the Ω curve that corresponds to single-mode flutter of the plate is defined by the
following equation (Vedeneev 2005, 2013b):

Im k2(ω)= Im k3(ω). (6.3)

The location of this curve in the ω-plane is studied below.
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6.2. Methods for solving the asymptotic eigenvalue problem
6.2.1. Numerical solution

Just like for infinite plates (§ 4), we employ three methods to calculate the curve
Ω . The ‘numerical’ solution deals with the full Rayleigh equation, which is solved
numerically, while the other two, the ‘analytical’ and ‘semi-analytical’ solutions, deal
with long-wave approximations of the Rayleigh equation.

The problem of solving (6.3) is that both kj(ω), j= 2, 3, as solutions of (2.2) for a
given ω, as well as ω satisfying (6.3), are not explicitly known. We could iteratively
solve (6.3) for ω and at each iteration use inner sub-iterations to find kj(ω), j= 2, 3.
However, that would be a very time-consuming solution, which is why we combine
two iterative methods in one numerical procedure. First, at each iteration, ωn is found
as a solution of (6.3) through the secant method, where kj(ω) are taken from the
previous iteration. Simultaneously, the functions kj(ω), j = 2, 3, are updated at each
iteration by updating pressure p(ωn). When combined in the way described in detail
below, the method shows convergence such that both kj(ω) tend to their actual values,
and ω tends to the value satisfying (6.3).

In more detail, the iterative procedure consists of the following steps. We calculate
the Ω curve in a point-by-point manner as the plot of the function Imω(Reω). Let
us have Reω specified, and we look for Imω such that ω = Reω + i Imω satisfies
(6.3).

(1) In the first step, n = 1, we assume that there is no pressure disturbance, i.e.
p2,1=0 and p3,1=0 (here pj,n is the pressure calculated for the jth wave at the nth
iteration, j= 2, 3), and put Imω0 = 0.0001 and Imω1 = 0.0002 as initial values.
Since p= 0, the solutions of (2.2) are

kj,1 = (−1)j

√
−M2

w +
√

M4
w + 4Dω2

1

2D
. (6.4)

(2) Let us now have the nth approximation, n > 1. The (n + 1)th approximation is
found through the following procedure. We solve the Rayleigh equation (2.3) with
the boundary conditions (2.5) and (2.7) and use the formula (2.4) to find pj,n+1=
p(kj,n(ωn), ωn), j= 2, 3. Then, we put

kj,n+1 = (−1)j

√
−M2

w +
√

M4
w + 4D(ω2

n − pj,n+1)

2D
. (6.5)

Finally, we use the following version of the secant method for finding ωn+1
satisfying (6.3):

Imωn+1 = Imωn

− (Im k2,n+1(ωn)− Im k3,n+1(ωn))(Imωn − Imω0)

(Im k2,n+1(ωn)− Im k3,n+1(ωn))− (Im k2,n+1(ω0)− Im k3,n+1(ω0))
.

(6.6)

Iterations are repeated until the desired accuracy is achieved, i.e.∣∣∣∣ Imωn+1 − Imωn

Imωn

∣∣∣∣< ε. (6.7)

Based on the convergence analysis, we have chosen ε= 10−6.
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6.2.2. Analytical solution
According to Vedeneev (2013b), in the region µ1/3� k� 1/δ, i.e. for wavelengths

that are much longer than the boundary layer thickness, but not too long so that the
flow influence on the wave is still not essential, the analytical solution for Imω is
written in the form

Imω=− µ

4 Reω
Im((A+ B)−1

2 + (A+ B)−1
3 ), (6.8)

where

Ai =
(

(Mki −ω)2√
k2

i − (Mki −ω)2

)−1

, Bi = δ
(∫ 1

0

T0(η) dη
(u0(η)− ci)2

− 1
)
, (6.9a,b)

and kj and cj = ω/kj are calculated for real ω= Reω in the absence of the flow, i.e.
by solving (2.2) at p= 0. This solution is obtained under the same conditions as the
solution (4.3) for an infinite plate.

6.2.3. Semi-analytical solution
In this section (similar to § 4.3), we consider long waves with k � 1/δ but, in

contrast to the analytical solution, allow arbitrarily small k. A semi-analytical solution
is obtained using the same iterative method as for a numerical solution with one
exception: for calculation of the pressure disturbance, we neglect the second term in
the Rayleigh equation, and thus

p=−µ
((

(Mk−ω)2√
k2 − (Mk−ω)2

)−1

+ δ
(∫ 1

0

T0(η) dη
(u0(η)− c)2

− 1
))−1

. (6.10)

The relation (6.3) is solved numerically in the same manner as in the numerical
approach.

6.3. Results for generalised convex boundary layer profile
Consider the generalised convex boundary layer profile defined by formulae (5.1) and
(5.3) for parameters (5.2a–d) and M= 1.6. Figure 9 shows the Ω curve in the ω-plane
for different boundary layer thicknesses obtained through various solution methods.
The following observations are made.

(1) For thin boundary layer thickness (δ= 0.1 or less, figure 9a), the three solutions
yield similar Ω curves, which are close to the curve for uniform flow. The
frequency range corresponding to growing eigenmodes, Reω ≈ 0.04–0.075, is
also close to that for uniform flow, i.e. the effect of the boundary layer is not
seen yet.

(2) For increased boundary layer thickness (δ= 2, figure 9b), the analytical and semi-
analytical solutions are close to the numerical solution for sufficiently small Reω
(namely, for Reω < 0.14). For Reω > 0.14, a difference between the numerical
and other solutions is seen, while the semi-analytical and analytical solutions are
in good agreement with each other. The frequency range of growing eigenmodes
is increased to Reω≈ 0.09–0.13.
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FIGURE 9. Curve Ω in the ω-plane for the boundary layer profile (5.1) and (5.3) and
boundary layer thickness δ=0.1 (a), δ=2 (b), δ=3 (c) and δ=4 (d). The thin continuous,
dashed and thick continuous lines represent the analytical, semi-analytical and numerical
solutions, respectively.

(3) For δ > 3, a significant difference between numerical and analytical solutions
appears, because the frequencies of the growing eigenmodes increase, and the
second term in the Rayleigh equation becomes essential. Figure 9(c) shows that
for δ> 3, the maximal growth rate Imω is lower, and the frequency range of the
growing eigenmodes is higher than predicted by the analytical and semi-analytical
solutions.

(4) For δ > 3.8, the numerical solution shows full stabilisation of the plate by the
boundary layer, whereas the analytical and semi-analytical solutions still have
a range of Reω with Imω > 0. An example is shown in figure 9(d) for δ = 4.
Calculations conducted up to δ = 20 confirm the stability of the plate obtained
in the numerical solution. Other solutions predict the existence of growing
eigenmodes for all δ considered, though the maximum growth rate tends towards
0 as δ increases.
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We therefore conclude that the short-wave effect is the following. With the
thickening of the boundary layer, the frequencies of growing eigenmodes increase.
This yields an increasing role of the k2 term in the Rayleigh equation. Calculations
show that, first, due to this term, the frequencies of growing eigenmodes are higher,
and the growth rates are lower than the long-wave approximation predicts. Second,
starting from a certain boundary layer thickness, the plate becomes stable, whereas
the long-wave approximation predicts instability for all thicknesses considered.

Note that no difference between the analytical and semi-analytical solutions is seen
in this example, because, for growing eigenmodes, the condition k�µ1/3 is satisfied
for any boundary layer thickness.

6.4. Results for boundary layer profile with a generalised inflection point
Let us now consider a boundary layer profile with a generalised inflection point
defined by formulae (5.3) and (5.7) for parameters (5.2a–d) and M = 1.3.

The calculated Ω curve is shown in figure 10. The following observations are made.

(1) For small δ (figure 10a), all solutions yield similar Ω curves, except for the small
area 0.016<Reω<0.02, where the analytical solution tends to infinity as Re c→
M − 1 for δ = 0. The three solutions are close to that for the uniform flow.

(2) For higher δ (figure 10b,c), the numerical and semi-analytical solutions are still
very close, predicting an increase of the frequency range for growing eigenmodes.
The analytical solution looks similar, except for a narrow vicinity of Reω= 0.02,
where it has a dip into the stability region Imω < 0. Compared to the uniform-
flow results, growth rates are essentially higher, due to the increasing growth rates
of downstream-travelling waves, which is demonstrated in § 5.2.

(3) For δ > 6 (figure 10d), some discrepancy between the numerical and semi-
analytical solutions appears, although this discrepancy is small. For small Reω,
the analytical solution is essentially different from the other solutions, because
for k∼µ1/3 this solution is not valid. For higher Reω (namely, Reω> 0.023 for
δ = 6), the analytical and semi-analytical solutions are in good agreement with
each other but differ from the numerical solution, because the condition k� 1/δ,
which is necessary for both long-wave approximations, becomes invalid.

(4) For δ > 10 (figure 10e), the frequency range corresponding to growing
eigenmodes continues to widen. All the solutions have two clearly marked
maxima of the Ω curve. Starting from a certain δ, both the semi-analytical and
numerical solutions have a dip around Reω = 0.017, where a very small piece
of the Ω curve is located in the bottom half-plane. For the analytical solution,
this dip is observed for much thinner boundary layers. The instability region is
thus split into two regions separated by a very narrow frequency range of stable
eigenmodes. For the numerical solution, this split occurs for δ > 12.25.

(5) For δ = 14, results are shown in figure 10( f ). It is seen that low-frequency
eigenmodes become stable, and the frequency range of the growing eigenmodes
is 0.015 < Reω < 0.042, except for a narrow dip around Reω = 0.017. The
maximum growth rate decreases for higher δ; however, the drop of Imω is
much smoother than for generalised convex boundary layers; in particular, up
to δ = 20 instability is still present. For high Reω, we observe an increasing
discrepancy between the numerical and other solutions due to the short-wave
effect of the k2 term of the Rayleigh equation.
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FIGURE 10. Curve Ω in the ω-plane for the boundary layer profile (5.3) and (5.7), and
boundary layer thickness δ = 0.1 (a), δ = 2 (b), δ = 4 (c), δ = 6 (d), δ = 10 (e) and
δ= 14 ( f ). The thin continuous, dashed and thick continuous lines represent the analytical,
semi-analytical and numerical solutions, respectively.
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We conclude that, as well as for the generalised convex boundary layer, thickening
of the boundary layer yields an increase of the frequencies of the growing eigenmodes.
However, unlike for convex boundary layers, the maximum growth rate is increased
for moderate thicknesses (δ < 10 in figure 10) compared to uniform flow. This is the
result of increasing growth rates of downstream-travelling waves, as shown in § 5.2.
For higher δ, the growth rates of downstream-travelling waves decrease, resulting in
smaller growth rates of finite plate eigenmodes compared to those of uniform flow.
However, instability is not fully suppressed up to δ = 20. The short-wave effect is
thus expressed in a wider unstable frequency range, while the maximum growth rate
is similar to that obtained by long-wave approximations.

7. Conclusions
In this paper, we have studied short-wave panel flutter in the presence of the

boundary layer. Namely, results for infinite and finite plates have been re-investigated
through the full Rayleigh equation, whose k2 term was neglected in the previous study
(Vedeneev 2013b). Based on two examples, one generalised convex boundary layer
profile and one profile with a generalised inflection point, we confirm results obtained
analytically by Vedeneev (2013b). Namely, for the generalised convex boundary layer,
the increase of the layer thickness yields the increase of the frequencies of growing
eigenmodes and the decrease of their growth rates. Calculations based on the full
Rayleigh equation show that, unlike the prediction of the long-wave approximation,
for sufficiently thick boundary layers, the plate is fully stabilised. For the boundary
layer with a generalised inflection point, the thickening of the layer first yields the
increase of the growth rates accompanied by the widening of the frequency range of
growing eigenmodes. For higher thicknesses, growth rates decrease and tend towards
0 as δ→∞; however, they stay positive for all thicknesses considered in this study.

Although the growth rate can be increased by the boundary layer, common positive
features of both types of the boundary layer profile are the damping of low-frequency
modes and the increase of growing mode frequencies in the case of sufficiently thick
boundary layers. It is known that structural damping (not considered in this paper)
is an effective way of suppressing single-mode flutter in higher modes (Vedeneev
2013a), while for lower modes it might be insufficient. In this case, the stabilisation
mechanism of the panel can be different for lower and higher eigenmodes: lower
modes can be stabilised by a boundary layer of appropriate thickness, while higher
modes can be damped due to structural damping.

Based on the results of this paper, we conclude that, for accelerating supersonic
flows, which usually occur along convex walls, the presence of the boundary layer
has a stabilising effect, because such flows have generalised convex boundary layer
profiles. On the other hand, in the flows along concave walls, a laminar boundary
layer profile with a generalised inflection point may occur; in this case the boundary
layer can have a destabilising effect.

When the boundary layer is turbulent, but the characteristic frequencies of the
turbulence are much higher than the frequency of growing plate oscillations, the
results of this study are suitable as the first approximation. As there is no evidence
of turbulent boundary layers with a generalised inflection point, we conclude that
turbulent boundary layers always have a stabilising effect.

The results of this paper partially explain the stabilisation of the plate by the convex
boundary layer observed in the experimental and theoretical studies of Muhlstein et al.
(1968), Gaspers et al. (1970), Dowell (1973), Hashimoto et al. (2009), Visbal (2014)
and Alder (2015, 2016) but show that the effect of the boundary layer with a
generalised inflection point can be essentially destabilising.
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