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On the Application of the Asymptotic Method
of Global Instability in Aeroelasticity Problems
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Abstract—The asymptotic method of global instability developed by A.G. Kulikovskii is an
effective tool for determining the eigenfrequencies and stability boundary of one-dimensional
or multidimensional systems of sufficiently large finite length. The effectiveness of the method
was demonstrated on a number of one-dimensional problems; and since the mid-2000s, this
method has been used in aeroelasticity problems, which are not strictly one-dimensional: such
is only the elastic part of the problem, while the gas flow occupies an unbounded domain.
In the present study, the eigenfrequencies and stability boundaries predicted by the method
of global instability are compared with the results of direct calculation of the spectra of the
corresponding problems. The size of systems is determined starting from which the method
makes a quantitatively correct prediction for the stability boundary.
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1. INTRODUCTION

In many problems, one studies the stability of systems whose length in one direction is much
greater than in other directions. Examples are given by the stability of boundary layers on solids,
flows in pipes, hydro- and aeroelastic stability of thin-walled structures in a fluid flow, and other
systems. After linearization of the system of equations for perturbations, one usually analyzes
the behavior of solutions of the form ei(kx−ωt), i.e., traveling waves, which in the vast majority of
problems completely determine the stability of arbitrary perturbations of an infinitely long system.

However, in finite, albeit arbitrarily long, systems, solutions in the form of a single traveling
wave cannot exist, because the waves are reflected from the boundaries even if the latter are far
enough from the point where perturbations arise. The stability problem of long but finite sys-
tems was solved by Kulikovskii in the general form for one-dimensional [7] (see also [12, § 65]) and
multidimensional [10] systems. The main results are as follows:

• even for a system of very large length L, its stability criterion does not coincide with the
stability criterion of an infinitely long system;

• growing perturbations can take either the form of “one-sided” eigenfunctions, which are deter-
mined by the reflection of waves from one end, or the form of “global” eigenfunctions, which
represent two waves that travel in opposite directions and turn into each other when reflected
from the ends of the system;

• if the length L of the system is large enough, then the growth or damping of one-sided
eigenfunctions is determined only by the boundary conditions at the end from which the
waves are reflected; the stability criterion of global eigenfunctions does not depend on the
specific form of the boundary conditions defined at the ends.

If the instability of a system is determined by the growth of one-sided eigenfunctions, it can
generally be eliminated by a change of the physical system such that the boundary condition at
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the end is changed appropriately. On the contrary, the global instability is determined only by the
properties of the system itself and cannot be eliminated by changing the boundary conditions.

The criterion of global instability has been successfully used in the stability analysis of a wide va-
riety of processes: Poiseuille flows in a pipe of finite length [1, 8, 9], thermocapillary convection [16],
jet flows of a liquid [19, 32], elastic plates in a flow of an incompressible fluid [15], spiral waves [5],
flames [14], and axisymmetric Couette flows of a magnetic fluid [17]. This criterion has also been
used in the analysis of some thermoplasticity models [6], in the study of vibrations of fluid-conveying
pipes [3, 11], in the study of flutter of panels of flying vehicles in a supersonic gas flow [21, 23, 29, 30],
in the analysis of eigenmodes of flows over cavities [20], and in the study of other problems [4].

Although most of these problems are essentially one-dimensional, in the stability problems of
plates in a gas flow only a plate is finite, while the region of gas flow is infinite. Such a system
is not completely one-dimensional; therefore, analyzing only one-dimensional waves, one cannot
obtain an estimate for the size of plates to which an asymptotic method applies. The goal of the
present study is to compare the results obtained by the global instability criterion with the results
of numerical solution of the flutter problem for an elastic plate in a gas flow and to determine the
size of the plate starting from which the asymptotic criterion gives satisfactory results. This issue
is important because the asymptotic method provides a quantitatively correct description of both
linear and nonlinear [18, 24, 28] phenomena in plane problems, but the effectiveness of the method
in three-dimensional problems has not yet been determined.

2. STATEMENT OF THE PROBLEM

Consider an elastic plate of finite size built-in into an absolutely rigid plane. On one side of
the plate, there is a supersonic gas flow, and on the other side, constant pressure equal to the
unperturbed pressure in the flow is maintained, which results in a flat equilibrium state of the plate
(Fig. 1). We consider three configurations: a plate in the form of a strip (Fig. 1a), which yields a
two-dimensional problem; an infinite series of linked plates of size Lwx × Lwy or, which is the same,
a plate in the form of a periodically pinned strip (Fig. 1b); and an isolated plate of size Lwx × Lwy

(Fig. 1c). The two-dimensional case reduces to the other cases for Lwy = ∞.
The motion of a plate is described by the Kirchhoff–Love model. The stiffness of the plate is Dw,

its thickness is h, and the density of its material is ρm. An isotropic in-plane tension force Nw = σh
acts in the plane of the plate, where σ is the tension stress. The gas is assumed to be inviscid and
ideal, and the motion is adiabatic. The gas velocity is U , density is ρ, and the speed of sound is a.

In order to pass to dimensionless variables, we take a, ρm, and h as quantities with independent
dimensions. Then the dimensionless parameters are expressed in terms of dimensional ones as
follows:

D =
Dw

a2ρmh3
, Mw =

√
Nw

a2ρmh
, Lx =

Lwx

h
, Ly =

Lwy

h
, M =

U

a
, μ =

ρ

ρm
. (2.1)

Here D, Lx, and Ly are the dimensionless stiffness, length, and width of the plate, M and μ are the
Mach number and the dimensionless gas density. The parameter Mw, which characterizes tension,
has the meaning of the dimensionless velocity of long waves in the plate in vacuum.

The Kirchhoff–Love equation of motion of a thin elastic plate in a gas flow and the pinning
boundary condition at its edges are expressed in the dimensionless form as follows:

∂2w

∂t2
+D�2w −M2

w �w + p = 0, (x, y) ∈ S,

w =
∂2w

∂x2
= 0, x = 0, Lx, w =

∂2w

∂y2
= 0, y = 0, Ly ,

(2.2)
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Fig. 1. Plate in a gas flow: (a) plate in the form of a strip, (b) series of linked simply supported
plates, and (c) an isolated rectangular plate.

where w(x, y, t) is the plate deflection, � is the two-dimensional Laplace operator, and S =
(0, Lx)× (0, Ly) is the surface of the plate. The linearized theory of gas flow implies the following
expression for the difference of pressures p(x, y, t) acting on the plate in terms of the gas-flow
potential ϕ(x, y, z, t):

p(x, y, t) = −μ

(
∂

∂t
+M

∂

∂x

)
ϕ(x, y, 0, t). (2.3)

The system of linearized equations and boundary conditions describing small perturbations of
gas has the form (

∂

∂t
+M

∂

∂x

)2

ϕ− ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= 0, z > 0,(

∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
→ 0 as z → +∞ along the characteristics z =

x− x0√
M2 − 1

,

∂ϕ

∂z
=

∂w

∂t
+M

∂w

∂x
, z = 0, (x, y) ∈ S,

∂ϕ

∂z
= 0, z = 0, (x, y) /∈ S.

(2.4)

Here the first equation is the wave equation in the coordinate system moving at the flow velocity.
The second (radiation) condition is imposed only on growing perturbations. The third condition
in (2.4) expresses the impermeability of the gas through the oscillating plate and the surrounding
absolutely rigid surface.

The stability of an elastic plate in a gas flow is determined by the behavior of eigenmodes;
therefore, henceforth we assume that small perturbations of the plate deflection and the potential
of the gas flow have the form

w(x, y, t) = W (x, y)e−iωt, ϕ(x, y, z, t) = Φ(x, y, z)e−iωt. (2.5)

Substituting these expressions into the equations for perturbations yields an equation for the
eigenmodes of the plate oscillations

D�2W −M2
w �w − ω2W − μ

(
−iω +M

∂

∂x

)
Φ(x, y, 0) = 0, (x, y) ∈ S,

W =
∂2W

∂x2
= 0, x = 0, Lx, W =

∂2W

∂y2
= 0, y = 0, Ly,

(2.6)
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Fig. 2. Intersection of the inverse Mach cone emanating from point (x, y) with the surface of the
plate.

and the gas-flow equations(
−iω +M

∂

∂x

)2

Φ− ∂2Φ

∂x2
− ∂2Φ

∂y2
− ∂2Φ

∂z2
= 0, z > 0,(

∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
→ 0 as z → +∞ along the characteristics z =

x− x0√
M2 − 1

,

∂Φ

∂z
= −iωW +M

∂W

∂x
, z = 0, (x, y) ∈ S,

∂Φ

∂z
= 0, z = 0, (x, y) /∈ S.

(2.7)

The equation for the potential Φ with boundary conditions (2.7) is solved analytically using the
Laplace transform [13, § 4.8]. On the surface of the plate, the solution is given by

Φ(x, y, 0) = − 1

π

∫∫
K

(
−iωW (x1, y1) +M

∂W (x1, y1)

∂x1

)
exp

(
iωM

β2

(
x− x1

))

× 1√
(x− x1)2 − β2y21

cos

(
ω

β2

√
(x− x1)2 − β2y21

)
dx1 dy1, (2.8)

where K is the triangle obtained in the intersection of the inverse Mach cone emanating from the
point (x, y) with the whole plate (Fig. 2) and β =

√
M2 − 1.

Thus, substituting the expression (2.8) with the pinning boundary conditions into the equation
of motion of the plate (2.6), we arrive at an integro-differential problem for finding complex eigen-
values ω. Note that the eigenvalue ω enters the equation in a complicated way: both algebraically
and through the kernel of the integral operator. The system is unstable if and only if at least one
of the eigenfrequencies ωn lies in the upper complex half-plane Imωn > 0.

The results of numerical solution of the indicated eigenvalue problem will be given below in
Section 5. Now we consider another approach to the solution of the same problem.

3. ASYMPTOTIC METHOD FOR ONE-DIMENSIONAL SYSTEMS

3.1. General solution to the initial–boundary value problem. Consider an arbitrary
one-dimensional system with spatial coordinate x and unknown functions u1(x, t), . . . , un(x, t). Sup-
pose that the linearized system of equations for perturbations is a system of partial differential
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equations with constant coefficients

P11u1 + P12u2 + . . .+ P1nun = 0,

P21u1 + P22u2 + . . .+ P2nun = 0,

. . . . . . . . . . . . . . . . . . . . . . .

Pn1u1 + Pn2u2 + . . . + Pnnun = 0,

(3.1)

where Pij = Pij(∂/∂x, ∂/∂t) are polynomials in ∂/∂x and ∂/∂t. Suppose that for t = 0 there are
some smooth initial conditions and the following homogeneous boundary conditions are defined at
the ends of the system x = ±L/2 (L is the width of the system):

n∑
j=1

Bαjuj

(
−L

2
, t

)
= 0, α = 1, . . . , s,

n∑
j=1

Bβjuj

(
L

2
, t

)
= 0, β = s+ 1, . . . , N,

where Bαj and Bβj are also polynomials in ∂/∂x and ∂/∂t, s is the number of boundary conditions
at the left end (x = −L/2), and N is the number of boundary conditions specified at both ends.

Let us apply the Laplace transform with respect to the variable t to the system of equations (3.1),
i.e., multiply the system by eiωt and integrate with respect to t from zero to infinity:

P11U1 + P12U2 + . . .+ P1nUn = F 0
1 (x, ω),

P21U1 + P22U2 + . . .+ P2nUn = F 0
2 (x, ω),

. . . . . . . . . . . . . . . . . . . . . . .

Pn1U1 + Pn2U2 + . . . + PnnUn = F 0
n(x, ω).

(3.2)

Here Pij = Pij(∂/∂x,−iω), Uj = Uj(x, ω) is the image of the function uj(x, t), and the right-hand
side depends on the initial conditions at t = 0. The boundary conditions for Uj take the form

n∑
j=1

Bαj

(
∂

∂x
,−iω

)
Uj

(
−L

2
, ω

)
= G0

α(ω), α = 1, . . . , s,

n∑
j=1

Bβj

(
∂

∂x
,−iω

)
Uj

(
L

2
, ω

)
= G0

β(ω), β = s+ 1, . . . , N,

(3.3)

where the right-hand side also depends on the initial conditions.
We have obtained a boundary value problem for a linear inhomogeneous system of ordinary

differential equations with the frequency ω as a parameter. The general solution of this system is
given by the sum of a particular solution of the inhomogeneous system and the general solution
of the homogeneous system. Linearly independent solutions of the homogeneous system can be
taken in the form of traveling waves: Uj(x, ω) = bjm(ω)eikm(ω)x, where the wavenumbers km(ω),
m = 1, . . . , N , are the solutions of the dispersion equation of the system unbounded along the x axis:

D(k, ω) =

∣∣∣∣∣∣∣∣∣
P11(ik,−iω) P12(ik,−iω) . . . P1n(ik,−iω)

P21(ik,−iω) P22(ik,−iω) . . . P2n(ik,−iω)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pn1(ik,−iω) Pn2(ik,−iω) . . . Pnn(ik,−iω)

∣∣∣∣∣∣∣∣∣ = 0. (3.4)

Thus, the general solution of system (3.2) has the form

Uj(x, ω) = U∗
j (x, ω) +

N∑
m=1

Cmbjm(ω)eikm(ω)x, (3.5)

where U∗
j (x, ω) is a particular solution of system (3.2) and Cm are arbitrary constants.
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To determine Cm, we substitute (3.5) into the boundary conditions (3.3). We obtain a system
of linear algebraic equations for Cm of the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11e
−ik1L/2 a12e

−ik2L/2 . . . a1Ne−ikNL/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

as1e
−ik1L/2 as2e

−ik2L/2 . . . asNe−ikNL/2

a(s+1)1e
ik1L/2 a(s+1)2e

ik2L/2 . . . a(s+1)NeikNL/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aN1e
ik1L/2 aN2e

ik2L/2 . . . aNNeikNL/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

C1

. . .

Cs

Cs+1

. . .

CN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a∗1(−L/2, ω)
. . . . . . . . . . . .

a∗s(−L/2, ω)

a∗s+1(L/2, ω)
. . . . . . . . . . . .

a∗N (L/2, ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here aij = aij(kj(ω), ω), and the right-hand side is defined by the choice of the particular solution
U∗
j (x, ω).

Denote the matrix of the system by A and the matrix in which the mth column is replaced with
the right-hand side by Am. Then, by Cramer’s rule we have Cm = |Am|/|A|, which yields a solution
to the boundary value problem:

Uj(x, ω) = U∗
j (x, ω) +

1

|A|

N∑
m=1

|Am|bjm(ω)eikm(ω)x.

Applying the inverse Laplace transform, we obtain a solution satisfying the initial and boundary
conditions:

uj(x, t) =
1

2π

∫
Γ

[
U∗
j (x, ω) +

1

|A|

N∑
m=1

|Am(ω)|bjm(ω)eikm(ω)x

]
e−iωt dω. (3.6)

The integration is performed along a line Γ parallel to the real axis that lies sufficiently high in the
complex ω-plane: −∞ < Reω < ∞, Imω = const > P . The integral (3.6) is calculated by moving
the integration contour downward to the domain Imω → −∞, finding the poles of the integrand,
and applying the residue theorem:

uj(x, t) =

∞∑
n=1

i

(
d|A(ωn)|

dω

)−1 N∑
m=1

|Am(ωn)|bjm(ωn)e
i(km(ωn)x−ωnt). (3.7)

Here the cuts emanating from the branch points of the function k(ω) do not contribute to the
value of the integral (3.7), because bypassing the cut on different sides leads only to renumbering
the branches km(ω) rather than to changing the values of the integrand. The countable set of
eigenfrequencies ωn is determined by the equation

|A(ω)| = 0. (3.8)

The solution (3.7) is obtained in the case when the behavior of perturbations of the physical
system is described by a system of partial differential equations. In this case, the dispersion equa-
tion (3.4) contains no branch points, and the solution has only discrete frequency spectrum. In
the case of a plate streamlined by a gas, the system of equations has a form different from (3.1)
(because only the plate has a finite size, while the gas flows along the whole x-axis), and the
dispersion equation has branch points. In this case, the solution (3.7) has an additional continuous
spectrum, which arises due to taking into account the cut connecting the branch points in the
complex ω-plane. One can show that the continuous spectrum in this particular case is real and
the stability of the solution obtained is determined only by the discrete frequency spectrum.

Note that the calculations performed here are valid not only for systems described by partial
differential equations but also for arbitrary linear homogeneous systems whose properties are in-
variant along the x-axis. Such systems always have solutions of traveling wave type, from which
one can obtain, by superposition, a solution satisfying the boundary conditions.
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3.2. Global and one-sided instability. Suppose that the width of the system is large
enough (L � 1). It turns out that in this case one can analyze the behavior of the eigenfre-
quencies ωn in the general form and obtain the criterion found by Kulikovskii [7] (see also [12, § 65])
for the asymptotic stability of the system.

First, we consider the general properties of the solutions of the dispersion equation for the
infinite system,

D(k, ω) = 0.

We will assume that the system is evolutionary, i.e., the quantity P = maxk∈R Imωj(k) exists and
is finite. Then, for Imω > P , all the solutions kj = kj(ω) are complex. Let us number them in
the order of decreasing imaginary part for large Imω and split them into two groups: Im kj > 0,
j = 1, . . . , s, and Im kj < 0, j = s+ 1, . . . , N . We will call the waves corresponding to wavenumbers
from the first (second) group waves moving from left to right (respectively, from right to left).

Consider the frequency equation (3.8):∣∣∣∣∣∣∣∣∣∣∣∣∣

a11e
−ik1L/2 a12e

−ik2L/2 . . . a1Ne−ikNL/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

as1e
−ik1L/2 as2e

−ik2L/2 . . . asNe−ikNL/2

a(s+1)1e
ik1L/2 a(s+1)2e

ik2L/2 . . . a(s+1)NeikNL/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aN1e
ik1L/2 aN2e

ik2L/2 . . . aNNeikNL/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.9)

where aij = aij(kj(ω), ω). For L → ∞, the leading term of this determinant is the product of the
exponential factor

e−i(k1(ω)+...+ks(ω)−ks+1(ω)−...−kN (ω))L/2

and two minors of the matrix A: one of them has order s and occupies the upper left corner, and
the other has order n − s and occupies the lower right corner of this matrix. The second leading
exponential term differs from the first one by

ei(ks(ω)−ks+1(ω))L,

and its coefficient is the product of the similar minors of the matrix obtained from A by interchanging
the sth and (s+ 1)th columns. Thus, retaining the leading two terms in equation (3.9), we obtain

|As| · |AN−s|+ |A′
s| · |A′

N−s|ei(ks(ω)−ks+1(ω))L = 0. (3.10)

The solutions of equation (3.10) for L � 1 fall into one of the following two groups.
1. If Im ks(ω) �= Im ks+1(ω), then, as L → ∞, equality (3.10) yields

|As(ω)| · |AN−s(ω)| = 0. (3.11)

The eigenfrequencies defined by this equation are said to be one-sided (the meaning of this term
will be explained below). If at least one of these eigenfrequencies has a positive imaginary part,
then the system is unstable; in this case, the instability is also said to be one-sided.

2. If equation (3.11) is not satisfied, then, as L → ∞, (3.10) necessarily implies the equality

Im ks(ω) = Im ks+1(ω). (3.12)

Equation (3.12) defines a curve Ω in the complex ω-plane that possesses the following property:
in the neighborhood of any of its points, there always exists a frequency that satisfies (3.10), and,
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conversely, any such (non-one-sided) frequency lies in the neighborhood of this curve. Thus, the
non-one-sided eigenfrequencies, albeit forming a discrete set, are situated near the curve Ω; the
greater the length L of the system, the closer these eigenfrequencies to this curve and the higher
their density along the curve. If a part of Ω is in the upper half-plane of ω, then the eigenfrequencies
situated near this part of the curve correspond to unstable perturbations. The spectrum defined by
equality (3.12) and the instability due to this spectrum are said to be global (the meaning of this
term will be explained below).

When deriving equality (3.12), we assumed that the mutual arrangement of Im kj inside each
group is not changed under the variation of ω. In the general case, the curve Ω near which the
eigenfrequencies are situated is defined by the equation

min
1≤j≤s

Im kj(ω) = max
s+1≤j≤N

Im kj(ω). (3.13)

Thus, for sufficiently large L, the frequency spectrum is split into one-sided and global ones.
The greater L, namely, the more accurate the transition from (3.9) to (3.10) and then to (3.11)
and (3.12), the higher the accuracy of such splitting.

3.3. Physical meaning of one-sided instability. Let, for definiteness, the determinant |As|
in (3.11) vanish. Consider the semi-infinite system on the interval x > −L/2 subject to the damping
condition for x → +∞. Solving the system of equations for perturbations in the same way as in
Subsection 3.1, we obtain a solution in the form (3.5). The difference is that, in view of the damping
condition for x → +∞, in (3.5) one should keep only the s traveling waves that move away from the
boundary x = −L/2 and correspond to the wavenumbers k1, . . . , ks. Substituting the solution (3.5)
thus modified into the boundary conditions at x = −L/2, we obtain a system of linear algebraic
equations with the matrix As for determining the amplitudes Cj . Solving this system and calculating
an analog of integral (3.6), we find that the spectrum of eigenfrequencies of the semi-infinite system
is determined by the frequency equation

|As| = 0.

When the determinant |AN−s| vanishes in (3.11), one should consider the semi-infinite system
on the interval x < L/2 subject to the damping condition for x → −∞.

Hence, the one-sided spectrum of a finite system is the union of the spectra of systems that are
infinitely long in one of the directions, which explains its name.

Note that the one-sided instability is determined only by the boundary conditions specified
separately at the right and left ends of the system and does not depend on the combination of these
conditions.

3.4. Physical meaning of global instability. Assume for definiteness that the arrangement
of Im kj inside each group is not changed under the variation of ω and the equation for the curve Ω
is given by (3.12).

Suppose that at one end of the system, say, at x = −L/2, a perturbation is excited in the form
of s traveling waves moving away from this end:

s∑
j=1

Cse
i(kjx−ωt).

When these waves reach the right end x = L/2, the amplitude of one of them, namely, that of the
sth wave, is much greater than the amplitudes of the other waves, because kj are numbered in the
order of decreasing imaginary parts. Hence, one can neglect the other waves when determining the
amplitudes of the waves reflected from the right end. When the N − s reflected waves traveling
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Fig. 3. (a) Hierarchy of waves in a system of finite length, and (b) mutual transformation of ks
and ks+1 into each other under reflections from boundaries in an eigenfunction. The arrows indicate
the propagation directions of waves.

away from the right end return to the left end, for a similar reason one can neglect the amplitudes
of all waves except the (s+ 1)th one.

Thus, for large L, two waves traveling in opposite directions, namely, the sth and (s+ 1)th ones,
play a dominant role in the reflection process. This situation is illustrated in Fig. 3a.

Let us calculate the amplitudes of these waves at different instants of time. When the wave
Cse

i(ksx−ωt) excited at the left end reaches the right end, its amplitude is Cse
− Im ksL/2 (the coef-

ficient e−iωt can be ignored because it is the same for all waves). Upon reflection, this wave turns
into the wave As,s+1Cse

− Im ksL/2eIm ks+1L/2ei(ks+1x−ωt), where As,s+1 is the reflection coefficient
of the sth wave into the (s + 1)th one at the right end. When the latter wave reaches the left
end, its amplitude becomes As,s+1Cse

− Im ksL/2eIm ks+1L. Upon reflection, it turns into the wave
As+1,sAs,s+1Cse

− Im ksL/2eIm ks+1Le− Im ksL/2ei(ksx−ωt), where As+1,s is the reflection coefficient of
the (s+ 1)th wave into the sth one at x = −L/2.

If the amplitude and phase of the sth wave after two reflections coincide with the original
ones, the process described will be cyclically repeated, i.e., it will represent an eigenfunction. The
condition of invariance of the amplitude has the form

As+1,sAs,s+1e
Im(ks+1−ks)L = 1.

For large L, this condition can be satisfied only if Im ks(ω) ≈ Im ks+1(ω), i.e., for ω lying in the
neighborhood of the curve (3.12). On the other hand, in the neighborhood of any point defined
by equality (3.12), one can find a frequency at which not only the amplitude but also the phase of
the wave after double reflection coincides with the original amplitude and phase, i.e., the process of
reflections represents a natural oscillation.

Thus, the global eigenfunctions are composed of the two most amplified (most slowly damped)
waves that travel in opposite directions and turn into each other at the ends of the system (Fig. 3b).
One can see from (3.12) that the spectrum of global eigenfrequencies does not depend on specific
boundary conditions at x = ±L/2 but is determined only by the character of the system in the
interval −L/2 < x < L/2. This is why we use the term “global.”

3.5. Weak global instability. In the case of weak instability, we can present a simpler
mechanism of formation of an eigenfunction.

Suppose that one of the parameters of the problem, which we denote by μ ∈ R, is small and,
moreover, the system is neutrally stable for μ = 0. The dispersion equation has the form

D(k, ω, μ) = 0,

and its solutions are kj = kj(ω, μ). Consider a real eigenfrequency ωR ∈ R lying on the curve Ω for
μ = 0, i.e., such that

Im ks(ωR, 0) = Im ks+1(ωR, 0). (3.14)
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Let us supplement this frequency with an increment iωI, where ωI ∈ R, |ωI| 
 1, and find an ωI
such that this frequency lies on the curve Ω for μ �= 0, |μ| 
 1. We have

kj(ωR + iωI, μ) = kj(ωR, 0) + i
ωI

g(ωR)
+ Δ(kj(ωR, 0), ω)μ,

Δ =
∂kj
∂μ

∣∣∣∣
μ=0

= −∂D
∂μ

(
∂D
∂kj

)−1∣∣∣∣
μ=0

, g(ωR) =

(
∂kj
∂ω

)−1∣∣∣∣
μ=0

.

The equation Im ks(ωR + iωI, μ) = Im ks+1(ωR + iωI, μ) for the curve Ω reduces to the following
expression for the frequency increment:

ωI(ωR) = μ

(
Re

∂ks
∂ω

− Re
∂ks+1

∂ω

)−1

Im
(
Δ(ks+1, ωR)−Δ(ks, ωR)

)
μ.

By definition, Im ks should increase and Im ks+1 decrease with increasing ωI; hence,

Re
∂ks
∂ω

> 0, Re
∂ks+1

∂ω
< 0.

The system is unstable when ωI(ωR) > 0 for at least one real ωR, which implies the instability
criterion

ImΔ(ks+1, ωR) > ImΔ(ks, ωR). (3.15)

The physical meaning of this criterion is as follows. When μ = 0, the amplifications of the
wave eiksx traveling from left to right and of the wave eiks+1x traveling from right to left coin-
cide, which is expressed by equality (3.14). For μ �= 0 and the same real frequency ωR, these
amplifications become different, because ImΔ(ks, ωR) �= ImΔ(ks+1, ωR) in the general case. If the
amplification of the wave traveling in one direction exceeds the damping of the wave traveling in
the opposite direction (which is expressed by condition (3.15)), then, as a result of propagation and
mutual reflection of these two waves, for real frequency, the amplitude will increase in each cycle of
reflections. As a result, the perturbation will exponentially increase, which means the instability.

This amplifying process of reflections does not represent an eigenfunction, because condi-
tion (3.12) is not satisfied for real ωR and μ �= 0. However, an eigenfunction can be obtained
by adding an increment iωI(ωR) to the frequency. In this case, the process of reflections is not
amplified; however, amplification will occur due to the presence of a positive imaginary part of
the frequency. Thus, in the case of weak global instability, two equivalent representations of the
formation of an eigenfunction are possible: amplifying reflections for real frequency and reflections
at a frequency shifted by iωI under which the wave amplitude is preserved.

4. GLOBAL INSTABILITY OF AN ELASTIC PLATE IN A GAS FLOW

4.1. Results of the analysis of the curve Ω. So far we have considered the instability
criterion for systems of large length in the general form. Consider the results of its application to
the stability problem of a plate in the form of a strip (see Fig. 1a) in a gas flow [21, 22]. For waves
in an infinite plate, the dispersion equation obtained from the solution of system (2.6), (2.7) has
the form

(Dk4 +M2
wk

2 − ω2)− μ
(ω −Mk)2√

k2 − (ω −Mk)2
= 0. (4.1)

The first term expresses the contribution of elastic and inertia forces of the plate, and the second
expresses the effect of the gas flow. The radiation condition requires the choice of the following
branch of the square root:

Re
√

k2 − (ω −Mk)2 > 0, Imω → +∞.
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Fig. 4. Typical shape of the curve Ω: (a) in the case of simultaneous single-mode and coupled flutter,
(b) in the case of single-mode flutter alone, (c) in the case of coupled flutter alone, and (d) in the case
of stability. The circle indicates the end of the curve Ω, which is the branch point of k2 and k4 (a, c)
or of k2 and k3 (b, d).

The dispersion equation (4.1) has four roots: k1 and k2, which belong to the first group, and k3
and k4, which belong to the second. For μ = 0, these roots correspond to flexural waves that propa-
gate along the plate in vacuum. The analysis shows that, first, there are no one-sided eigenfunctions
under typical clamping, pinning, and free-edge boundary conditions. Second, global instability can
take place [21, 22], and the curve Ω consists in the general case of two parts, Ω1 and Ω2, which
correspond to the two different mechanisms of instability (Fig. 4). The results in [21, 22] were ob-
tained under the assumption that the parameter μ is small, which almost always holds for realistic
parameters of the problem: the gas density is 1000 and more times less than the densities of typical
engineering materials, so that μ � 10−3.

In the range of sufficiently high frequencies ω � μ2/3, there is a curve Ω1 defined by the relation

Im k1 > Im k2(ω) = Im k3(ω) > Im k4,

where k2 and k3 correspond in the absence of gas to sinusoidal waves traveling in opposite direc-
tions. For

M > Mw + 1, (4.2)

this curve has a region lying in the upper half-plane of ω, which has a characteristic “hump”
corresponding to the most rapidly growing eigenfunctions (Fig. 5). Namely, under condition (4.2),
the curve enters the upper half-plane in the interval ω∗∗ < Reω < ω∗, where

ω∗ = (M − 1)

√
(M − 1)2 −M2

w
D

,

ω∗∗ =

√
(M2 + 1−

√
4M2 + 1)(M2 + 1−

√
4M2 + 1−M2

w)

D
,
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Fig. 5. Curve Ω1 for the parameters (4.3).

which corresponds to the phase velocity range√
M2 + 1−

√
4M2 + 1 < c < M − 1.

Here ω∗∗ is real only for M >
√√

4M2
w + 1 +M2

w + 1; if

1 < M <

√√
4M2

w + 1 +M2
w + 1,

then the curve Ω1 lies in the upper half-plane on the whole interval 0 < Reω < ω∗. The frequency
ωmax at which Imω attains its maximum lies close to ω∗: |ωmax − ω∗| ∼ μ2/3; therefore, with a high
degree of accuracy, we can assume that ωmax ≈ ω∗. The maximum growth rate of perturbations
(“height of the hump”) is

ωI,max(M,Mw,D, μ) = μ2/3

√
3

8

(
(M − 1)2 −M2

w
D

)1/6 (2(M − 1)2 −M2
w)

1/3

(M − 1)4/3

− μ
(2M − 1)2

4(M − 1)
√

(2M − 1)2 − 1
.

Outside the range ω∗∗ < Reω < ω∗, the curve Ω1 lies in the domain Imω < 0; as |ω| → ∞, it
asymptotically approaches the horizontal axis from below. In the absence of gas flow, the curve Ω1

coincides with the horizontal axis and describes all possible natural oscillations of the plate in
vacuum; therefore, the eigenfunctions with frequencies close to Ω1 represent the eigenmodes in
vacuum modified by a gas flow.

An example of calculated curve Ω1 is demonstrated in Fig. 5 for the parameters M = 1.5,
Mw = 0, and

D = 23.9, μ = 1.2× 10−4, (4.3)

where the values of D and μ correspond to a steel plate in an air flow at an altitude of 3000 m or
to an aluminum plate at an altitude of 11 000 m above the sea level.

Following the curve Ω to the left, one may face two situations. If the tension Mw is high enough,
then the curve ends with a branch point of the roots k2 = k3; it does not contain parts other than Ω1

(see Figs. 4b and 4d). In the case of tension

Mw < M cr
w =

(√
54

4

)1/3( μM2

√
M2 − 1

)1/3

D1/6, (4.4)
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Fig. 6. Curve Ω2 for the parameters (4.3).
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Fig. 7. Transition to instability: (a) for single-mode flutter and (b) for coupled flutter.

a corner point of the curve Ω arises at which Im k2 = Im k3 = Im k4. The further continuation of Ω
is given by the relation

Im k1 > Im k2 = Im k4 > Im k3,

which determines the part Ω2 (Fig. 6). It is situated almost vertically and ends with the branch
point of k2 = k4 (Figs. 4a and 4c). In the absence of tension, i.e., for Mw = 0, the location of this
branch point is found explicitly:

k̂ =

(
μM2

√
M2 − 1

)1/3

(4D)−1/3e−iπ/6, ω̂ =

√
3

2

(
μM2

√
M2 − 1

)2/3

(4D)−1/6eiπ/6.

For Mw = M cr
w , there is an intermediate state: the curve Ω2 consists of one triple branch point

k2 = k3 = k4, which is also an endpoint of the curve Ω1, and the branch point itself in the ω-plane
is real in this case and is given by

k̂ = − i

2

(
μM2

√
M2 − 1

)1/3

D−1/3, ω̂ =

√
3

4

(
μM2

√
M2 − 1

)2/3

D−1/6.

When condition (4.4) is satisfied but (4.2) is not, the curve Ω1 lies completely in the lower
half-plane and Ω looks as shown in Fig. 4c.

4.2. Behavior of the eigenmodes of a plate in a gas flow. Thus, there can exist two
instability regions defined by the criteria (4.2) and (4.4), respectively. A more detailed analysis
has shown that they correspond to two different physical mechanisms of instability, called single-
mode flutter and coupled flutter (Fig. 7). In single-mode flutter, under the action of the flow,
the eigenfrequencies of the plate are shifted from the real axis (where they are in the absence of
the flow) to the upper half-plane; i.e., a weak (on the order of μ) aerodynamic amplification of
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oscillations arises, which is also called negative aerodynamic damping (Fig. 7a). In the coupled
type of flutter, two eigenfrequencies approach each other, nearly merge together, and then move
away in opposite almost vertical directions: one moves downward, which corresponds to a strongly
damped mode, and the other moves upward, which corresponds to a growing mode (Fig. 7b). Thus,
the criteria (4.2) and (4.4) give the asymptotic boundaries of each type of flutter as L → ∞. An
important fact is that there are no other types of flutter, because the curve Ω can have only these
two regions in the upper half-plane.

The asymptotic criterion of single-mode flutter (4.2) can be rewritten as an instability criterion
for each eigenmode separately. In the case of a weak effect of the flow on the plate, the eigenfre-
quencies of the plate in the flow are in the neighborhood of the frequencies of the plate in vacuum.
On the other hand, they are situated near the curve Ω1, which deviates little from the real axis
(by a value on the order of μ). Thus, we can approximately assume that Reωn coincide with the
frequencies of the plate in vacuum ω0n and find Imωn from the equation of the curve Ω1. The
variation of the length L of the plate leads to the variation in Reωn, and the frequencies will move
in the complex plane along Ω1 as beads threaded on a rigid wire in the form of this curve. In
particular, for a plate simply supported on both sides we have

Reωn ≈ ω0n =
πn

L

√
D
(πn

L

)2
+M2

w.

If the plate is short enough, then all Reωn > ω∗ and the plate is stable. As the length L of the plate
increases, the eigenfrequencies move to the left. For certain lengths L, the first frequency passes
through the “hump” of the curve Ω1, which corresponds to flutter in the first mode; then the second
frequency passes through the “hump,” and so on. The instability in the nth mode corresponds to
the situation when the frequency ωn lies between ω∗∗ and ω∗; this yields the following range of
Mach numbers corresponding to instability in this mode:

M∗
n < M < M∗∗

n , (4.5)

M∗
n = 1 +

√
λn, M∗∗

n =

√
1 + λn +

√
4λn + 1, λn =

√
4Dω2

0n +M4
w +M2

w
2

. (4.6)

In the domain of single-mode flutter, different modes do not interact with each other and have the
same structure as the modes in vacuum.

In contrast to the case of single-mode flutter, the stability boundary of coupled flutter cannot
be obtained by the asymptotic method in any form analogous to (4.5), because the effect of the
flow on the eigenfrequencies becomes essential and the assumption that Reωn ≈ ω0n is not valid
any longer. The violation of the criterion (4.4) only yields conditions under which coupled flutter
does not arise for arbitrarily large length of the plate; however, if this criterion is satisfied, then
without a more detailed analysis it is impossible to determine the length L for which the transition
to coupled flutter occurs.

5. NUMERICAL ANALYSIS AND COMPARISON WITH ASYMPTOTIC RESULTS

In the one-dimensional problems the accuracy estimate of the asymptotic method is related to
the damping rate of those waves away from the boundaries that do not take part in the formation
of eigenfunctions. However, in the present case this approach is insufficient, because the problem in
question is not completely one-dimensional: the plate has a finite length, whereas the domain of gas
flow is infinite. Therefore, it is most expedient to compare the asymptotic results with a numerical
solution of the eigenvalue problem (2.6), (2.8). Such a comparison was carried out in [25, 27] for
the two-dimensional problem (see Fig. 1a) solved by the Bubnov–Galerkin method, with a detailed
description of the numerical method and analysis of convergence.
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5.1. Comparison of results for an untensioned plate. First, consider the results for a
plate without tension, i.e., Mw = 0, for the dimensionless parameters (4.3). In Fig. 8, the solid lines
demonstrate the results of calculation of the stability boundaries for the first six oscillation modes
in the plane (L,M), and the dashed lines show the asymptotic boundaries (4.6). One can see that
for sufficiently large L the results of calculations almost coincide; moreover, just as in (4.6), M∗

n → 1
and M∗∗

n →
√
2 as L → ∞. For small and moderate L, there are two differences. First, the real

domains of flutter are bounded as L decreases: for L < 57 the plate is stable, whereas the asymptotic
boundaries are unbounded, with M∗,M∗∗ → ∞ as L → 0. Second, for 300 ≤ L ≤ 350 there is a
boundary of coupled flutter; when crossing it, the boundaries of single-mode flutter in the first two
modes vanish, because these modes become “coupled.” However, this does not affect the single-mode
flutter in higher order modes, whose instability boundaries are continued toward greater L.

To understand the nature of single-mode flutter, we consider the motion of eigenfrequencies
in the ω-plane. For simplicity, we will consider the first four frequencies, because the behavior of
higher frequencies is analogous. For L = 250 and M = 1.6, all frequencies lie in the lower half-
plane (Fig. 9), and the corresponding modes are damped. We will reduce the Mach number M
for constant L. For M = M∗∗

n (the upper branch in Fig. 8), the nth frequency crosses the real
ω-axis and enters the upper half-plane, and the nth mode becomes a growing mode. An important
feature of this transition to instability is that different frequencies do not approach and do not
affect each other. Flutter in each mode occurs independently; therefore, it is called “single-mode”
flutter. When M decreases further, the quantity Imωn attains its maximum and then decreases.
For M = M∗

n (the lower branch in Fig. 8), the frequencies again cross the real axis and enter the
lower half-plane, and the corresponding modes become damped. Thus, the nth mode, n = 1, . . . , 4,
is in the domain of single-mode flutter for M∗

n < M < M∗∗
n .

Next, consider a transition from stability to single-mode flutter and then to coupled flutter as
the plate length increases. First, we take M = 1.3 and increase L from 60 to 400. In Fig. 10 one
first can see single-mode flutter, which arises when the boundaries in Fig. 8 are crossed. Then,
at L ≈ 320, the first and the second frequencies merge together, after which Imω1 grows rapidly:
from 4.5 × 10−5 for L = 320 to 4.77 × 10−4 for L = 400, whereas Imω2 decreases rapidly: from
2.8 × 10−5 for L = 320 to −4.08 × 10−4 for L = 400. Since, according to Fig. 8, the transition
to coupled flutter for M = 1.3 occurs from the domain of single-mode flutter, the merging occurs
in the upper half-plane of the ω-plane. Higher frequencies (n > 2) remain in the upper half-plane

L
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Fig. 8. Calculated boundaries of the single-mode flutter in the first six modes (thin solid lines), the
asymptotic boundaries (4.6) (dashed lines), and the boundary of the coupled flutter (heavy line).
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Fig. 9. Motion of eigenfrequencies in the complex plane for the parameters (4.3), L = 250, and
1.05 ≤ M ≤ 1.6.
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Fig. 10. Motion of eigenfrequencies in the complex plane for the parameters (4.3), M = 1.3, and
60 ≤ L ≤ 400.

without approaching each other; thus, one simultaneously has coupled flutter in the first two modes
and single-mode flutter in higher order modes.

Finally, consider the motion of frequencies when the transition to coupled flutter occurs from the
stability region. Take M = 1.6 and increase L again from 60 to 400 (Fig. 11). For 110 ≤ L ≤ 220,
there is single-mode flutter in modes 4–6 in accordance with the intersection of boundaries in
Fig. 8; modes 1–3 are damped for L < 321. For L ≈ 321, modes 1 and 2 merge together; however,
in contrast to the case of M = 1.3, the merging occurs in the lower half-plane. After merging,
Imω1 increases from −2.7× 10−5 for L = 321 to 4.13 × 10−4 for L = 400, whereas Imω2 decreases
from −2.8 × 10−5 for L = 321 to −4.69 × 10−4 for L = 400. Thus, a transition to coupled flutter
occurs. The other frequencies (n = 3, . . . , 6) remain in the lower half-plane of ω; i.e., these modes
are damped for L > 321.
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Fig. 11. Motion of eigenfrequencies in the complex plane for the parameters (4.3), M = 1.6, and
60 ≤ L ≤ 400.

5.2. The effect of tension on single-mode flutter. It follows from the asymptotic crite-
rion (4.6) that the Mach numbers for which flutter arises increase significantly as the tension Mw
increases. For example, for a simply supported plate with L = 300, relations (4.6) show that even
for not too high tension of the plate with stress σ = 129.6 × 106 Pa, the lower boundary of flutter
minnM

∗
n increases from 1.051 for an untensioned plate to 1.403. Here and below in calculations

we take the parameters (4.3). The table shows the upper and lower boundaries of flutter obtained
from (4.6) for the parameters (4.3) as L → ∞ (the dependence of M∗

n and M∗∗
n on n disappears

as L → ∞).
The results of calculations for the full problem (2.6), (2.8) are shown in Fig. 12 for Mw =

0.2, 0.3, 0.4. For Mw = 0.2, one can see an insignificant variation of the boundaries of flutter,
especially in the first mode: the upper branch moves slightly downward, the lower branch, upward,
and the left part of the boundary moves to the right. For other modes, the boundaries move slightly
upward. The boundary of coupled flutter moves into the domain M > 1.8 and is missing in the
figure.

For Mw = 0.3, the boundary of flutter in the first mode moves into the domain L ≥ 500, and
one can only see a small fragment of it in the interval 500 ≤ L < 600. For the second mode, the
upper branch moves downward, the lower branch, upward, and the left part of the boundary moves
to the right. The boundaries for modes 3–6 move to higher values of M , and the instability region
becomes narrower.

For Mw = 0.4, the boundaries of modes 1 and 2 move into the domain L > 600, so that they are
not seen in Fig. 12. The instability regions in modes 3–6 move toward still greater values of M and
are further narrowed down. The left regions of the boundary for mode 3 are significantly shifted to
greater values of L.

Thus, as Mw increases, two phenomena are observed in the variation of instability regions. First,
in all modes, the instability regions move to higher values of M , that are close for L → ∞ to the
values obtained by the asymptotic formulas (4.6) and shown in the table. Second, one can observe
a shift of instability regions in lower order modes to greater values of L; this phenomenon is not
explained by the asymptotic theory.
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Variation of the boundaries of single-mode flutter for various tensions of the plate (4.6) with param-
eters (4.3) as L → ∞

σ, Pa Mw M∗
n M∗∗

n

0 0.0 1.000 1.414
8.1× 106 0.1 1.100 1.425

32.4 × 106 0.2 1.200 1.455
72.9 × 106 0.3 1.300 1.502
129.6 × 106 0.4 1.400 1.562

5.3. Comparison of the boundaries of coupled flutter. Above we considered the bound-
aries of single-mode flutter for which the transition to instability occurs without interaction between
modes. For higher values of M and L, the transition to instability occurs through the merging of
frequencies, i.e., in the form of coupled flutter (Fig. 8). From the viewpoint of global instability,
this occurs when the frequencies are situated near the vertical part of the curve Ω (see Fig. 4), i.e.,
near Ω2. This part exists when condition (4.4) is satisfied.

Inequality (4.4) yields Mw on the order of μ1/3, and, since μ is a small quantity, even small
tension eliminates coupled flutter. Since the criterion (4.4) does not depend on L, for Mw > M cr

w
coupled flutter disappears for any plate made of a given material for given thickness and range of
Mach numbers, irrespective of how long it is.

Consider the results of calculation of the boundaries of coupled flutter that are shown in Fig. 13
for the parameters (4.3). For every L, there exists a curve Mw = Mw(M) such that there is no
coupled flutter for Mw ≥ Mw(M) (note that single-mode flutter is possible in this case). The curve
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Fig. 12. Boundaries of flutter in the first six modes in the plane (L,M) for the parameters (4.3) and
the following values of Mw: (a) 0.2, (b) 0.3, and (c) 0.4.
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1 1.5 2 2.5 3

Stability

Fig. 13. Boundaries of coupled flutter in the plane (M,Mw) for the parameters (4.3). Thin lines rep-
resent the results of calculation for various values of L, the heavy line shows the asymptotic boundary
as L → ∞ (4.4), and the dashed lines are the boundaries of single-mode flutter (upper branches).

Mw = Mw(M) obtained by the asymptotic formula (4.4) and denoted as “L = ∞” lies above all the
curves calculated for finite values of L, and in this sense it represents the limit boundary of coupled
flutter: tension that does not satisfy (4.4) guarantees the absence of coupled flutter for plates of
any length. Thus, the asymptotic results correspond to the results obtained from the solution of
the full eigenvalue problem.

An interesting feature is that the tension required to suppress coupled flutter is much less than
that required to suppress single-mode flutter. Indeed, Fig. 13 shows that Mw = 0.15 is sufficient to
eliminate coupled flutter for any length L of the plate up to M = 3.0, whereas for the much higher
tension Mw = 0.4 there remains a domain of single-mode flutter in Fig. 12 for L > 174 and M < 1.74.

6. FLUTTER OF RECTANGULAR PLATES: THE ASYMPTOTIC METHOD

The asymptotic method for one-dimensional systems [7; 12, § 65] has been generalized to higher
dimensions [10]. The idea is as follows: in the case of a domain of sufficiently large size, neglecting
the most rapidly damped waves, one can construct closed cycles of reflections of waves that represent
eigenfunctions. This generalization was used for constructing the boundaries of single-mode flutter
of rectangular plates [23, 26].

6.1. Effect of gas on natural oscillations. Consider an eigenmode of a plate in vacuum
that is characterized by the numbers m and n of half-waves in the directions x and y, respectively.
For simplicity, we will assume that the plate is simply supported; then an oscillation (standing
wave) is defined by the expression

w(x, y, t) = cos(kxx+ ϕx) cos(kyy + ϕy) e
−iωt. (6.1)

In the case of other boundary conditions, the expression (6.1) is valid outside some neighborhood
of the edges in view of Bolotin’s dynamic edge effect [2].

Let us represent the oscillation as a superposition of four traveling waves:

w(x, y, t) =
1

4

(
eiϕxeikxx + e−iϕxe−ikxx

)(
eiϕyeikyy + e−iϕye−ikyy

)
e−iωt

= C1e
i(kxx+kyy−ωt) + C2e

i(kxx−kyy−ωt) + C3e
i(−kxx−kyy−ωt) + C4e

i(−kxx+kyy−ωt). (6.2)
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(a) (b)

1

4

3

2

Fig. 14. Eigenmode of oscillations of a plate: (a) a standing wave and (b) its representation as a
superposition of four traveling waves. The numbers indicate the propagation directions of the waves.

Let us number the propagation directions of waves according to the order of terms in (6.2) (Fig. 14).
Then the formation of a standing wave can be represented as follows. At one of the edges, a traveling
wave is excited that propagates, say, in direction 1. After successive reflections from the four edges
of the plate, it is transformed into waves propagating in directions 2–4. After the last reflection, it
turns into the original wave, and then the process is cyclically repeated. After several such cycles,
the propagation of the four waves acquires a steady-state character, and their superposition leads
to the formation of the standing wave (6.1).

Now, suppose that the plate is exposed to a gas. We will neglect the effect of the plate edges
on the perturbation of the gas flow and assume that the flow acts on the traveling waves (6.2) as
if they had infinite span. Knowing the effect of gas on such waves, we can easily understand its
effect on the natural oscillations as a whole. The effect of the flow on the spatial amplification of
infinite-span waves has been analyzed above in the two-dimensional case, i.e., in the case when the
direction of the gas flow and the wave vector of the perturbation coincide. Below we present the
main results adjusted for the fact that the waves travel at an angle to the gas flow.

Consider the jth plane wave ei(kxx+kyy−ωt) with {kx, ky} = {k cos(αj + θ), k sin(αj + θ)}, j =
1, . . . , 4, that travels along an imaginary infinite plate streamlined by a gas. Here αj is the angle
between the gas velocity vector and the wave vector, θ is the angle between the flow direction and
the x-axis, and k =

√
k2x + k2y , Re k > 0. In the absence of gas, k is real and positive; in the presence

of gas, k is generally complex. Positive Im k correspond to the case when the waves are damped in
their propagation direction, while negative Im k, to the case when the waves are amplified.

The dispersion equation of the plate–gas system has the form (4.1) with a correction for the fact
that the gas velocity vector is projected onto the plane of propagation of the wave:

(Dk4 +M2
wk

2 − ω2)− μ
(ω −Mk cosαj)

2√
k2 − (ω −Mk cosαj)2

= 0. (6.3)

Denoting by k0(ω) = k(ω, 0) the length of the wave vector in the absence of gas (μ = 0) and
assuming that μ is a small parameter, from (6.3) we obtain

k(ω, μ) = k0 +Δ(k0)μ,

where Δ(k0) is the leading term of the expansion of k(μ) for small μ.
Now, consider the effect of gas on the natural oscillations. To this end, it is convenient to

represent the propagation of a wave as the propagation of its separate regions (Fig. 15). The
trajectories of these regions between the edges are segments of straight lines that have one of the
four directions (Fig. 14b), with the mirror reflection from the edges. Depending on the oscillation
mode, the trajectories may be closed (Figs. 16a and 16b) or open (Fig. 16c). A closed trajectory
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(a)

(b)

Fig. 15. (a) Representation of propagation of a wave as the propagation of its separate regions, and
(b) the initial trajectories of these regions.

(a) (b) (c)

xxx

yyy

Fig. 16. Trajectories of wave regions: (a) a closed trajectory symmetric about one of the coordinate
axes, (b) a closed trajectory asymmetric with respect to coordinate axes, and (c) an open trajectory.

is a closed polygonal line. One can easily show that an open trajectory is everywhere dense in the
rectangle bounded by the contour of the plate.

By a cycle of reflections of wave regions we will mean a time period during which the trajectories
of these regions return to the initial points (in the case of a closed trajectory) or become close to them
(in the case of an open trajectory). Calculating the amplitude variation along each trajectory for
such a period, we find the amplitude variation for the wave as a whole, because the trajectories cover
the whole surface of the plate. If the amplitude amplification is different on different trajectories,
then the plane wave ceases to be plane. In this case, diffraction phenomena may arise, which were
considered in [26].

Consider some trajectory and calculate the amplitude variation over a cycle of reflections. This
variation occurs, first, during the propagation of a wave from one edge to another due to the presence
of the imaginary part of the wavenumber (propagation along the segments of the trajectory) and,
second, during reflections at the edges of the plate. Taking the initial amplitude equal to 1 and
considering successively the amplitude variations during propagation between the edges and under
reflections, we obtain the amplitude after a cycle of reflections (it is assumed that n reflections have
occurred during this period of time):

n∏
p=1

Ape
(−l1 ImΔ(k1)−l2 ImΔ(k2)−l3 ImΔ(k3)−l4 ImΔ(k4))μ. (6.4)

Here Ai are the reflection coefficients at the edges and lj are the total distances passed by the
trajectory along the jth direction. Since the amplitude is not changed after the cycle of reflections in
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the absence of gas (because the plate is a conservative system in itself), it follows that
∏n

p=1Ap = 1.
Next, it is obvious that l1 = l3 and l2 = l4 (in the case of an open trajectory, these equalities hold
approximately). Therefore, the final condition of amplification of oscillation is as follows:

l1 Im(Δ(k1) + Δ(k3)) + l2 Im(Δ(k2) + Δ(k4)) < 0. (6.5)

Thus, condition (6.5) allows us to determine the presence or absence of amplitude growth for
each trajectory of a given oscillation mode. If such growth occurs on all trajectories, then the
oscillation itself is amplified; if the amplitude decreases on all trajectories, then the oscillation is
damped. If the amplitude increases on a part of trajectories and decreases on another part, then
the resulting behavior is determined by the diffraction of waves; this case is considered in [26].

6.2. Construction of an eigenfunction. The above method for calculating the spatial am-
plification of a wave is completely analogous to the two-dimensional case (Subsection 3.5). Now, let
us calculate the rate of temporal growth of the oscillation. To this end, to the frequency ωR ∈ R we
add a small term iωI such that the amplitude of the wave region after a cycle of reflections remains
unchanged.

Since

k(ωR + iωI, μ) = k0 +
iωI

g(ωR)
+ Δ(k0)μ,

where g(ω) = (∂k0(ω)/∂ω)
−1 is the group velocity of waves, the amplitude variation after a cycle

of reflections, calculated by analogy with (6.4), is given by the formula

n∏
p=1

Ape
(−l1 ImΔ(k1)−l2 ImΔ(k2)−l3 ImΔ(k3)−l4 ImΔ(k4))μ−(l1+l2+l3+l4)ωI/g(ωR).

Since this quantity should be equal to 1, the exponent vanishes, which implies that the sought term
is given by

ωI = −μg(ωR)
l1 Im(Δ(k1) + Δ(k3)) + l2 Im(Δ(k2) + Δ(k4))

2(l1 + l2)
. (6.6)

Thus, just as in the two-dimensional case (Subsection 3.5), we have found that the formation
of a growing eigenfunction of a rectangular plate can be represented in two ways: either as a
growing process of reflections for a real frequency or as amplitude-preserving reflections for a complex
frequency [10]. The second mechanism for appropriate ωR (such that not only the amplitude but
also the phase is preserved after a cycle of reflections; in this case the process is “looped”) represents
a growing eigenmode.

6.3. Gas velocity vector is parallel to one of the sides of the plate. Below, we restrict
the analysis to a particular case when the flow is directed along the x-axis, i.e., is perpendicular
to the front edge, the plate is simply supported, and there is no tension (the general case was
considered in [23, 26]). In this case, Δ(k1) = Δ(k2) and Δ(k3) = Δ(k4) in view of symmetry. Then
the growth condition (6.5) for the wave amplitude over a cycle of reflections reduces to the condition

ImΔ(k1) < − ImΔ(k3), (6.7)

which expresses the following fact: the amplification of waves 1 and 2 traveling in the direction of
the gas flow should be greater than the damping of waves 3 and 4 traveling against the flow. Note
that since the trajectories for the chosen oscillation mode differ from each other only by the initial
point while their propagation directions coincide, the amplitude variation after a cycle of reflections
and condition (6.7) do not depend on a trajectory but are determined only by the oscillation mode.
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Calculating Δ(kj) from (6.3) and solving inequality (6.7), we obtain asymptotic boundaries
of single-mode flutter for each mode that are analogous to the two-dimensional boundaries (4.6):
M∗(Lx, Ly) < M < M∗∗(Lx, Ly), where

M∗(Lx, Ly) =

√
1 +

( n

m

)2
(
Lx

Ly

)2(
1 +

√
Dk20

)
,

M∗∗(Lx, Ly) =

√
1 +

( n

m

)2
(
Lx

Ly

)2√
1 +Dk20 +

√
4Dk20 + 1,

(6.8)

m and n are the half-wavelengths of the eigenmode in the directions of the x- and y-axes, and

k0 =

√(mπ

Lx

)2
+

(nπ
Ly

)2
.

Note that a decrease in Ly for a fixed Lx leads to an increase in the angles αj between the waves
and the flow and, accordingly, to an increase in the Mach numbers for which amplification occurs.

7. RESULTS OF CALCULATIONS AND COMPARISON
WITH ASYMPTOTIC RESULTS

Solving problem (2.6), (2.8) numerically for the four eigenfrequencies ω1
j (j = 1, . . . , 4), we

calculated the boundaries of the instability region in the plane (Lx,M), i.e., the level lines Imω1
j = 0.

All the calculations were performed for the problem parameters (4.3). The calculations were carried
out for two configurations of plates: a series of plates (see Fig. 1b) [31] and an isolated plate (see
Fig. 1c). The difference between these configurations manifests itself only in aerodynamics. In
the case of a series, each plate experiences the effect of the neighboring plates whose domains of
influence contain this plate. In the case of an isolated plate, the pressure distribution is different,
because there are no surrounding plates.

Consider Fig. 17, which demonstrates the boundaries of the instability region in the first mode
(frequency ω1

1) for Ly = 1000, 500, 450, 400, 350. The solid lines show the results of calculation for a
series of plates, and the dashed lines, for an isolated plate. The maximum value of length Lx,max for

M

Lx

Ly =1000
Stability

1.1

1.2

1.3

1.4

1.5

50 100 150 200 250 300 350

350

350

400

400

450 500

Fig. 17. Stability boundaries for the mode (1, 1) (frequency ω1
1) in the plane (Lx,M) for various

values of Ly and 1.1 < M < 1.5. Solid lines refer to the case of a series of plates, and dashed lines, to
the case of an isolated plate.
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Fig. 18. Stability boundaries for the mode (1, 1) in the plane (Lx,M) near the splitting of the
boundary: (a) a series of plates and (b) an isolated plate. The saddle point is shown by a circle.
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Fig. 19. Stability boundaries for the mode (1, 2) (frequency ω1
2) in the plane (Lx,M) for various Ly.

Solid lines refer to the case of a series of plates, and dashed lines, to the case of an isolated plate.

which the plate is stable for any width Ly is 57 and corresponds to Ly = ∞. For Lx > Lx,max and
sufficiently large values of Ly, there exists an interval M∗(Lx, Ly) < M < M∗∗(Lx, Ly) in which the
plate is unstable in the first mode. Note that the stability boundaries for Ly = 1000 almost coincide
in the two cases both with each other and with the boundary calculated in the two-dimensional
statement, i.e., for Ly = ∞ (see Fig. 8). As the width Ly decreases, the range of Mach numbers
in which the plate is unstable decreases, and for Ly = Ly,s the instability region is split into two
isolated subregions: one, lying in the domain of smaller values of Lx, corresponds to single-mode
flutter, and the other corresponds to flutter of coupled type. Figure 18 demonstrates this splitting
in greater detail: a saddle point in the instability region is clearly seen at Ly,s ≈ 425 for a series
and at Ly,s ≈ 356 for an isolated plate. As Ly decreases further, the domain of single-mode flutter
decreases in size and contracts to a certain point. For a certain width Ly, it completely shrinks to
this point and vanishes. The boundary of coupled flutter decreases much slower and shifts toward
higher values of Lx as Ly decreases.

Let us proceed to analyze the stability boundaries for higher order modes. Figure 19 shows
the region of flutter in the second mode (frequency ω1

2) for Ly = 1000, 400, 300, 250, 200. These
regions are bounded on the right by the values of Lx for which flutter of coupled type arises,
because the first and second modes are “coupled” in this flutter; the first mode becomes a growing
one, and the second, a damped one. Just as for the first mode, a decrease in Ly leads to a
contraction of the region of single-mode flutter; for a certain Ly, this region shrinks to a point and
vanishes.
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Fig. 20. Stability boundaries for the mode (1, 3) (frequency ω1
3) in the plane (Lx,M) for various

values of Ly. Solid lines refer to the case of a series of plates, and dashed lines, to the case of an
isolated plate.
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Fig. 21. Stability boundaries for the mode (1, 4) (frequency ω1
4) in the plane (Lx,M) for various

values of Ly. Solid lines refer to the case of a series of plates, and dashed lines, to the case of an
isolated plate.

The boundaries of the flutter region in modes 3 and 4, which do not take part in the formation of
flutter of coupled type, are shown in Figs. 20 and 21, respectively. In contrast to the first two modes,
for Ly = ∞ they have the asymptotes M∗ = 1 and M∗∗ =

√
2 as Lx → ∞ (Subsection 5.1). The

boundaries for Ly = 1000 almost coincide with the results of calculation for the two-dimensional
problem. As Ly decreases, the flutter regions for a series of plates move to higher values of M and
become bounded on the Lx-axis. Next, just as in the case of single-mode flutter with respect to the
first two modes, the instability boundaries shrink to a point and vanish.

The case of an isolated plate differs qualitatively by the fact that, as Ly decreases, the flutter
regions are “embedded” in each other so that the Mach numbers corresponding to instability do not
increase (see Figs. 20 and 21).

The shift of the regions of single-mode flutter of a series of plates toward higher Mach num-
bers with decreasing Ly is explained by the asymptotic theory of single-mode flutter. In Fig. 22,
the boundaries found numerically (heavy lines) are compared with those found by the asymp-
totic formulas (6.8) (thin lines). Figure 22a shows the boundaries of flutter in mode 3 for
Ly = 1000, 200, 130, 110 (solid, dashed, dot-and-dash, and dotted lines, respectively). In Fig. 22b,
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Fig. 22. Comparison of the boundaries of flutter obtained numerically (heavy lines) and by the
asymptotic formulas (6.8) (thin lines) for modes (a) 3 and (b) 4.

similar lines show the boundaries of flutter in mode 4 for Ly = 1000, 200, 100, 82. One can see
that an increase in the Mach numbers for which instability is observed is correctly described by the
asymptotics in the “central” part of the flutter region 100 ≤ Lx ≤ 300. The difference is only in
the domain of small Lx, where the condition of large dimensions in the x-direction is not satisfied,
and in the domain of large M , which is attained only for sufficiently small Ly, when the condition
of large dimensions of the plate in the y-direction is violated. From the asymptotic point of view,
the growth of M corresponding to instability is attributed to the fact that, as Ly decreases, the
angle αj between the waves constituting the eigenmode and the flow increases, which leads to an
increase in the Mach numbers (6.8).

For isolated plates, the absence of a similar shift is not explained by the asymptotic theory, which
rapidly loses accuracy as Ly decreases. In the case of a series of plates, the perturbation of the flow by
eigenmodes in a direction transverse to the flow can be represented as a superposition of two waves
traveling in opposite directions along a periodically supported strip; therefore, the perturbation is
correctly determined by the asymptotic theory. The only effect of the three-dimensional character
of the flow is that the plane into which the plate is built in is not deformed in front of the plate.
In the case of an isolated plate, the nondeformability around the lateral sides of the plate is also
important, but it is not taken into account by the asymptotic theory.

CONCLUSIONS

In this paper, we have compared the calculation results for the boundaries of single-mode and
coupled flutter of an elastic plate in a supersonic flow that were obtained by the asymptotic method
of global instability and by the numerical solution of the full integro-differential eigenvalue problem.
We have shown that for the two-dimensional problem (a plate in the form of a strip), the boundaries
of single-mode flutter are quantitatively correctly determined by the asymptotic method for a plate
length Lx of about 100 or greater, which corresponds to the structures used in engineering. The
asymptotic boundary of coupled flutter provides a sufficient condition for the absence of this type
of flutter in plates of any length.

In the case of a series of rectangular plates linked to each other, the accuracy of the asymptotic
theory decreases as the width Ly of the plates decreases; however, the theory makes a correct
prediction of the increase in the Mach numbers corresponding to single-mode flutter.

In the case of an isolated plate, there is a qualitative discrepancy between the asymptotic theory
and numerical calculations, because here the three-dimensional character of the perturbed gas flow
over the plate, which is not taken into account in the asymptotic theory, becomes dominant.
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