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A B S T R A C T

Aeroelastic instability of skin panels, known as panel flutter, can occur in the form of coupled-
mode or single-mode flutter. While the first type of flutter usually occurs in one eigenmode
(composed of the first and the second natural modes in vacuum) and yields well-studied
nonlinear limit cycle oscillations, the single mode flutter can occur in several simultaneously
growing eigenmodes, leading to complex nonlinear panel dynamics, including different co-
existing limit cycles, periodic and non-periodic higher-mode oscillations. Structural nonlinearity
and linear aeroelastic growth mechanism play the major role in this dynamic.

While the linear panel flutter boundaries in the two-dimensional formulation have been
studied in detail, there are only few investigations of the boundaries in the three-dimensional
case. Since the linear growth mechanism plays an essential role in nonlinear oscillations, its
comprehensive study is an important step toward understanding of complex dynamics of skin
panels in the three-dimensional case. In this paper, we investigate the flutter boundaries of
rectangular panels simply supported at all edges, and use potential flow theory to calculate the
unsteady pressure. The problem is considered in two formulations: a series of rectangular plates,
attached to each other, and a single rectangular plate. Flutter boundaries of the first four modes
are calculated, and their transformations with the change of the spanwise plate width are studied
in detail.

1. Introduction

Panel flutter is a phenomenon of self-exciting skin panel vibrations in flight vehicles moving at high speeds. Unlike wing flutter,
usually it does not immediately yield the destruction of panels, but results in fatigue damage and rapidly decreases their lifetime.
Although panel flutter was first observed during WWII, the first essential theoretical studies were conducted a decade later
(Movchan, 1956, 1957). In these works, the Kirchhoff–Love model for panel dynamics and piston theory for unsteady flow pressure
(Iliushin, 1956; Ashley and Zartarian, 1956) were used. During the following decades, the panel flutter problem was studied in more
complex formulations (Bolotin, 1963; Grigolyuk et al., 1965; Dugundji, 1966; Dowell, 1974; Novichkov, 1978; Mei et al., 1999;
Algazin and Kiiko, 2006). In most of these works, the ‘elastic’ part of the problem was subject to complication: multi-layered and
composite panels, non-flat shells, geometrical and material nonlinearity, and complex material properties, including viscoelastic
materials, shape memory alloys, and piezoelectric materials (Kiiko and Pokazeev, 2005; Duan et al., 2003; Zhou et al., 1995). The
‘aerodynamic’ part of the problem was not changed: the piston theory was employed.

The linearised unsteady pressure of inviscid gas, acting on the oscillating plate (i.e., the potential flow theory), has the form of an
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integral operator of a combination of the plate deflection and its spatial derivative, with a kernel consisting of special functions
(Miles, 1959). In the limit of M → ∞, this expression yields the piston theory formula; however, for Mach numbers M < 2, the
accuracy of the piston theory essentially drops, and it becomes totally invalid for M < 2 . Substitution of the potential-flow
expression for pressure into the plate equation yields an integro-differential eigenvalue problem, which, due to its complexity, was
studied in just a few papers. Min-de (1958) and Ming-de (1984) gave a closed-form solution for the two-dimensional integro-
differential problem, which makes the eigenvalue problem algebraic; however, the latter turned out to be so difficult that no attempts
to solve it were made. Nelson and Cunnigham (1956), Dowell (1974), and Yang (1975) solved the same integro-differential equation
numerically through Galerkin and finite element methods for certain parameter values. It was noticed that, along with coupled-mode
flutter, which occurs when the problem is solved through the piston theory, calculations at M1 < < 2 show the presence of another
flutter type, namely, single mode (also called single-degree-of-freedom) flutter. Cunnigham (1967) studied flutter of rectangular
simply supported and clamped panels atM=1.3 through the potential flow theory and showed that single mode flutter is also present
in the three-dimensional problem, but disappears if the plate becomes sufficiently narrow in the spanwise direction. Dowell (1974)
also studied nonlinear limit cycle oscillations by combining a nonlinear von Karman plate model with linearised potential flow
theory, and observed pure first-mode oscillations at M1 < < 2 .

Later the problem of panel flutter was numerically analysed through more complex aerodynamic models, which take into account
aerodynamic nonlinearity, or shear flow aerodynamics, or both. Bendiksen and Davis (1995), Bendiksen and Seber (2008), Mei et al.
(2014), and Shishaeva et al. (2015) studied transonic and supersonic flutter in inviscid flow, while Dowell (1971, 1973), Gordnier
and Visbal (2002), Hashimoto et al. (2009), Visbal (2014), and Alder (2015, 2016) investigated flutter in a viscous flow.

A completely different approach was used by Vedeneev (2005), who analytically studied the two-dimensional panel flutter
problem with the potential flow aerodynamics through an asymptotic method of global instability (Kulikovskii, 1966) for sufficiently
long plates. It was strictly proved that single-mode flutter exists, and the physical mechanism of perturbation growth was revealed.
The important feature proved is that the single-mode flutter cannot be obtained if the piston theory is used (although, as was recently
shown by Ganji and Dowell (2016), higher-order expansions of the potential flow theory in the oscillation frequency yield correct
results at M < 2 , while the piston theory, being the first-term expansion, is just wrong at these M). Later Vedeneev (2012, 2013a)
solved this problem numerically and calculated the stability boundaries of the first six eigenmodes. Flutter region consists of coupled
mode flutter region and single mode flutter regions in various modes; the single mode flutter is dominant at low supersonic Mach
numbers and short plates. It was shown in a closed form (Vedeneev, 2007, 2013b) and confirmed numerically (Shishaeva et al.,
2015) that the multiplicity of linearly growing eigenmodes at small supersonic speeds yields the complex nonlinear dynamics of the
panel, which includes the co-existence of regular limit cycles and cycles with internal 1:2 resonance, higher-mode limit cycles, and
non-periodic oscillations.

The asymptotic method of Kulikovskii (1966) was also effective in the investigation of the boundary layer influence: Vedeneev
(2013c) and Bondarev and Vedeneev (2016) conducted a general study of the boundary layer effect on panel flutter for arbitrary
boundary layer profiles and showed that this effect is very different for boundary layers over convex and concave walls, and can be
essentially destabilising for certain flow conditions.

The three-dimensional flutter problem for rectangular panels of large lengths with potential flow aerodynamics was studied by
Vedeneev (2006, 2010), using a modified asymptotic method (Kulikovskii, 2006). Formulation of the problem for a numerical
solution without additional assumption of large plate length is more complicated than the two-dimensional problem because the
integration area in the integro-differential operator for the unsteady pressure becomes two-dimensional in the shape of a triangle
(Miles, 1959). In this formulation, the problem was studied only by Dowell (1974), who investigated first-mode flutter for three plate
aspect ratios at M < 2 , and by Cunnigham (1967), who considered several modes at Mach number M=1.3.

Thus, up to the present day, there is no general study of rectangular plate flutter in the potential-flow formulation for arbitrary
aspect ratios and Mach numbers. The present paper aims to fill this gap, taking into account that linear plate dynamics is not only
important by itself, but also plays a major role in the formation of nonlinear limit cycle oscillations (Shishaeva et al., 2015). We solve
this problem in two formulations. First, we study a particular case; namely, we consider a series of simply supported rectangular
plates attached to each other. In this case, the integral in the integro-differential eigenvalue problem becomes one-dimensional.
Second, we solve the exact problem for an isolated plate and investigate the effect of the single panel. Flutter boundaries for the first
four modes in the parameter space are studied in detail.

2. Formulation of the problem

We study the linear stability of an elastic plate which forms a part of the plane surface. One side of the surface is exposed to a
supersonic gas flow, as shown in Fig. 1. The other side experiences constant pressure so that the undisturbed state of the plate is flat.
The plate is simply supported along all edges. We consider two plate configurations. In the first one, the plate is an infinite strip of
the chordwise length Lxw, which is periodically simply supported with the spanwise period Lyw (Fig. 1a). This also can be
represented as an infinite series of rectangular plates of L L×xw yw size attached to each other. Obviously, due to connections between
spans, they are all either simultaneously stable or unstable. In the second configuration, the plate is a single rectangle of L L×xw yw
size (Fig. 1b).

While the plate equation and boundary conditions in both configurations are the same, the aerodynamics are different. In the
first case, each rectangular segment is affected by surrounding segments; in the second case it is not. We will show that in the first
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configuration the unsteady pressure is expressed as a one-dimensional integro-differential operator of the plate deflection, while in
the second case this operator is two-dimensional. That is why the second case is more computationally expensive.

Introduce the coordinate system as shown in Fig. 1. The gas flows along the x-axis, while z-axis is normal to the plate surface. The
bending stiffness of the plate is Dw, thickness is h, and the material density is ρm. In-plane tension of the plate and body forces are
neglected.

The gas is inviscid (the boundary layer is neglected) and perfect, the flow is adiabatic. Its undisturbed density and speed of sound
are ρ0 and a0. The gas flows in the half-space z > 0 with constant supersonic speed U0.

The Kirchhoff–Love equation of motion for an elastic plate in a gas flow and simply supported boundary conditions are as
follows:

ρ h w
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where ▵ is the two-dimensional Laplace operator and w x y t( , , ) is the plate deflection. Linearised potential flow theory yields the
following expression for the pressure perturbation p x y t( , , ) acting on the plate, through the perturbation of the flow potential
φ x y z t( , , , ):
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Linearised wave equation and boundary conditions (radiation as z → + ∞ and impenetrability at the plate surface) for small flow
perturbations have the form
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where S is the plate surface: x L∈ [0; ]xw in the first configuration and x y L L( , ) ∈ [0; ] × [0; ]xw yw in the second. The radiation

condition (4), which represents decay of perturbations along characteristics z x x M= ( − )/ − 10
2 at fixed t and y, is satisfied only for

growing perturbations.
In order to nondimensionalise the system, we take a0, ρ0, and h as dimensionally independent scales. Then
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where tildes represent dimensionless variables. Dimensionless parameters are expressed as follows:
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Fig. 1. Gas flow over (a) series of plates and (b) single plate, mounted into a rigid plane.
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where D, Lx, and Ly are dimensionless stiffness, length, and width of the plate, respectively, and M and μ are Mach number and
dimensionless gas density, respectively. Dimensionless dynamic pressure and mass ratio, not used in this study but widely used in
aeroelasticity, can be expressed through parameters (6) as

λ
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D
μM L

D
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ρ L
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μL* = = , * = = .xw

w

x xw

m
x

0 0
2 3 2 3

0

Below we will omit tildes, assuming that all variables are dimensionless.
The stability of the plate is determined by the stability of its eigenmodes; that is why we will consider small perturbations in the

form

w x y t W x y e φ x y z t Φ x y z e( , , ) = ( , ) , ( , , , ) = ( , , ) .iωt iωt− − (7)

Substituting (7) into the nondimensionalised system (1)–(5), we obtain the closed system of dimensionless equations for
perturbations consisting of the plate equation:
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and the flow equation
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The wave equation for the potential Φ with the boundary conditions (9) is solved in a closed form through Laplace
transformation (Miles, 1959, §4.8), and the solution is as follows:
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Fig. 2. Integration area K for obtaining unsteady pressure in the point (x,y); α is the Mach angle.
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where K is a triangle that is an intersection of the reversed Mach cone with the vertex at the point (x,y), with the plate (Fig. 2),

β M= − 12 .
Thus, the plate equation (8), after the substitution of (10), with simply supported boundary conditions, is an integro-differential

eigenvalue problem for finding eigenvalues ω. This problem is solved numerically. The region of instability for the n-th mode in the
parameter space is defined by the inequality ωIm > 0n . The plate is stable when each mode is damped.

3. Numerical procedure

3.1. Discretisation

We will use the Bubnov–Galerkin procedure for finding eigenvalues of the problem (8) with the potential Φ (10). The procedure
described below is developed based on the method for the two-dimensional problem (Vedeneev, 2012).

The plate deflection W x y( , ) is expressed as a superposition of basic functions, namely, mode shapes of the plate in vacuum:
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where Cl
k are unknown coefficients. Number the basic functions in the following manner:
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where square brackets mean the floor function of the number. Substitute the sum (12) into the plate equation (8). Multiplying it in
series by L T x y(2/ ) ( , )y n , n N= 1… , and integrating over the plate surface, we obtain a homogeneous system of linear algebraic
equations with unknowns Cm and matrix A ω( ):
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Here E is the identity matrix; K is the diagonal stiffness matrix, which represents the plate properties, with coefficients
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where indices k and l are calculated through (13). P is the aerodynamic force matrix with coefficients pnm:
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Thus, the frequency equation takes the form
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3.2. Flow pressure for a plate oscillating in natural mode

In the matrix A (14), only the aerodynamic force matrix is calculated numerically, which requires the calculation of the unsteady
aerodynamic pressure P x y T ω( , , , )m for a plate oscillating in natural modes, and then integration (15). This section is devoted to the
first problem, calculation of P.

3.2.1. Series of plates
Let us transform the expression (10) for the flow potential Φ in the case of the plate deflection W x y( , ) in the natural mode
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T x y W x W y x λy πk
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λ πl
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l

x y (17)

for y−∞ < < ∞. The two-dimensional integral over the triangle K can be written as two iterated integrals with respect to x and y.
Then the y-integral is calculated in a closed form. The resulting expression is as follows:
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where J0 is the Bessel function of the first kind, ξ ω βλ x x β= + ( ) ( − )/2 2 2.
Then, substituting (18) into the pressure expression (8), differentiating and grouping similar terms, we obtain:
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3.2.2. Single plate
Let the plate deflection, as before, be in the form (17) for y L0 < < y, but the plate is now single, i.e., W x y( ; ) = 0 for y < 0 and

y L> y. Consider four regions of the plate, S1, S2, S3, and S4, as shown in Fig. 3a.
If the point x y( ; ) belongs to the region S1, then the integration triangle K lies in the plate, and the expression for pressure is the

same as for a series of plates:

P x y P x y( , ) = ( , ),single series

where Pseries is readily given by (19).
Consider the case of x y S( , ) ∈ 4 (Fig. 3a). Then the integration triangle ABC (where B is the point (x,y)) does not fully belong to the

plate; namely, integrals over triangles APQ and COD are zero, and that over the pentagon PQBDO is not. Then the pressure is
expressed through the potential (10), where W x y( , ) is given by (17), but the integration area is now the pentagon PQBDO. We add
and subtract integrals over triangles APQ and COD in order to complete the integration area to the full triangle ABC, the integral over
which is given by (19). Hence,

P x y P x y P x y P x y( , ) = ( , ) − ( ; ) − ( , ),single series l r

Fig. 3. Regions S1–S4 of the plate (delimited by dashed lines), and the integration area for x y S( , ) ∈ 4 (a) and integration over small triangles (b).
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where Pl and Rr are calculated through the integrals (10) over triangles APQ and COD, respectively (indices ‘l’ and ‘r’ mean left and
right triangles, as seen from the position of the flow).

Similarly, if the point (x,y) belongs to the region S2 or S3, the pressure is given by

P x y P x y P x y P x y P x y P x y( , ) = ( , ) − ( , ), ( , ) = ( , ) − ( , ),single series l single series r

respectively.
Obviously, additional subtracted integrals over triangles APQ and COD for the points not belonging to S1 represent the influence

of the absence of plates surrounding the given plate, if compared to the case of the series of plates. Points of S1 do not ‘feel’ this
absence, because surrounding plates lie outside the reversed Mach cone, which is the region that influences the points belonging to
S1.

Now, consider the calculation of the pressures Pl, Pr, starting with the right triangle, Pr. First, rewrite (10) in the form of iterated
integrals by using (17):
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where x x y x βy( , ) = −0 , y x y x y x x β*( , , ) = − ( − )/ (Fig. 3b), and the following notations are introduced:
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The main difficulty in the direct integration of (20) is the singularity of the integrand in F at y y= *. Since it is integrable, we will first
remove it by changing variables. Namely, introduce variable η as follows:
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In this form the y-integral does not contain singularities and can be integrated by a regular integration rule.
With the given potential Φr (20) and (21), using expression for pressure (8), after long algebra we obtain P x y( , )r in the following

form:
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⎣⎢

⎤
⎦⎥ (23)

Finally, consider the integral over the left small triangle P x y( , )l . Since we consider deflections (17), where k and l are numbers of
half-waves in x and y directions, respectively, it follows, due to symmetry for odd l and anti-symmetry for even l, that

P x y P x L y( , ) = ( − 1) ( , − ).l
l

r y
+1
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3.3. Calculation of the aerodynamic force matrix

Now, consider the calculation of the integral (15) for a given pressure P x y T ω( , , , )m .

3.3.1. Series of plates
Let us first transform the expression (15), using (19). Let T x y W x W y( , ) = ( ) ( )m k

l and T x y W x W y( , ) = ( ) ( )n r
s . After substitution of (19)

into (15), the integral with respect to y is calculated in a closed form:

∫ ∫ ∫ ∫

∫ ∫ ∫

p ω
L

P x y T ω T x y dxdy
L

W y P x W x ω W x W y dxdy

L
W y W y dy P x W x ω W x dx δ P x W x ω W x dx

( ) = 2 ( , , , ) ( , ) = 2 ( ) ( , ( ), ) ( ) ( )

= 2 ( ) ( ) ( , ( ), ) ( ) = ( , ( ), ) ( )

nm
y

L L

m n
y

L L
l

x k r
s

y

L
l s

L

x k r l
s

L

x k r

0 0 0 0

0 0 0

y x y x

y x x

(24)

where δs
l is Kronecker delta.

It is seen that elements pnm are non-zero only for s=l, which is satisfied when m N n N[( − 1)/ ] = [( − 1)/ ]x x . Hence, non-zero pnm
fill square blocks of the matrix P lying on the main diagonal.

For calculation of non-zero pnm, we have to calculate two integrals with respect to x: outer (24), and inner (19). Both are
calculated by the trapezoidal rule. When calculating the outer integral, we had q points per the shortest half-wave, i.e. the step size
was

Δ
L

qN
= .x

out x

x

For calculation of the inner integral, we choose an r times smaller step size,

Δ
Δ

r
L

rqN
= = .x

in x
out

x

x

Values of Nx, r, and q are chosen based on the convergence study, which is conducted in Section 4.
Note that mode shapes of the plate in the flow along the x-axis (chordwise direction) are different from the mode shapes in

vacuum, while they are not changed along the y (spanwise) direction and have a sinusoidal shape. Consequently,

ω D μ L L ω D μ L
L
j

( , , , ) = , , , ,i
j

x y i x
y1⎛

⎝⎜
⎞
⎠⎟ (25)

where ωi
j is the eigenfrequency corresponding to the mode (i,j); i and j are the numbers of half-waves of the eigenmode in the x and

y directions, respectively. Thus, the instability boundary for the frequency with spanwise number j > 1 coincides with the instability
boundary for the frequency with j=1 and accordingly changed Ly. Due to the same reason, in calculations it is enough to put Ny=1.

3.3.2. Single plate
In the case of a single plate, the outer integral (15) with respect to y cannot be computed in closed form, that is why it is also

calculated numerically. Both integrals are calculated through the trapezoidal rule with uniform integration steps:

Δ
L

qN
Δ

L
qN

= , = .x
out x

x
y
out y

y

For a single plate, pressure P consists of the same expression as for a series of plates, and subtracted pressures over left and right
triangles. The component of pressure induced by the series of plates Pseries is calculated just as described in Section 3.3.1.
Subtracted quantity, P x y( ; )r or P x y( ; )l , has a form of integral (22), which for each x requires calculation of y-integral (23). They both
are also calculated by the trapezoidal rule, but the step is generally m times smaller than for outer integrals:

Δ
Δ
m

L
mqN

Δ
Δ
m

L
mqN

= = , = = .x
lr x

out
x

x
y
lr y

out
y

y (26)

Note that since (23) is the integral in α, and the step size is uniform in y, it is not uniform in α, and each integration point is found as

α α x y x y= ( ; ; ; ).l l k l

3.4. Method for solving the frequency equation

Consider the plate in vacuum. This case corresponds to the frequency equation (16) without the aerodynamic force matrix P:

K
L ω

Edet −
2

= 0.x
2⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

(27)
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This equation has N different real roots ω2, which correspond to natural frequencies in vacuum ω L k= (2/ )n x nn0 . Negative
frequencies are not considered, because eigenmotions for positive and negative frequencies coincide.

When aerodynamic forces are added, eigenfrequencies become complex, because the matrix P ω( ) is non-symmetric and complex
so that the system is non-conservative.

For the numerical solution of the frequency equation the following iterative procedure is used. For calculating the n-th
eigenfrequency ωn, we take the n-th natural frequency in vacuum ω L k= (2/ )n x nn0 as an initial approximation. Next, let us have the
p-th approximation ωnp. We construct a matrix A ω ω( , )p np n p+1 ( +1) so that it contains ωn p( +1) in the simplest form. All its coefficients
aij, except ann, are equal to the same coefficients of the matrix A ω( )np , whereas ann is calculated as

a k
L

ω p ω= −
2

+ ( ),nn nn
x

n p nn np( +1)
2

where knn and pnn are coefficients of matrices K and P, respectively.
Thus, the equation for calculating p( + 1)-th approximation ωn p( +1) takes the form

A ω ωdet ( , ) = 0.p np n p+1 ( +1) (28)

It is linear with respect to ωn p( +1)
2 ; among two branches ωn p( +1) we take the one with ωRe > 0n p( +1) .

Iterations for ωn are continued until the relative inaccuracy becomes sufficiently small:

ω ω
ω

ε
−

< .np n p

np

( −1)

(29)

According to the convergence study (Section 4), in calculations we used the value ε = 10−4.
A modification of the iterative procedure is used for calculating frequencies ω ω=n

j
1 and ω ω=n

j
+1 2 (as for basic functions,

notation ω ω=m k
l is used), which are responsible for the coupled-mode flutter. This type of flutter occurs when for certain parameters

of the problem these two frequencies tend to each other in the complex plane. In this case the iterative procedure needs modification,
because when iterations are close to the desired frequency, they can be cycled in form of ‘jumps’ of ωn p( +1) from one frequency branch
to the other (Fig. 4a). The modification solves this problem as follows. We construct the matrix A ω ω( , )p np n p+1 ( +1) for the next
approximation, where ωn p( +1) is present in two elements:

a k
L

ω p ω j n n= −
2

+ ( ), = , + 1.jj jj
x

n p jj np( +1)
2

(30)

Other coefficients aij of A ω ω( , )p np n p+1 ( +1) are the same as of A ω( )np . When solving the equation A ω ωdet ( , ) = 0p np n p+1 ( +1) , we obtain
four solutions, two of which, s1 and s2, have positive real part. They correspond to frequencies ωn and ωn+1. The following rule
chooses the root corresponding to the desired frequency. Let s3 be a point lying in the centre of the segment connecting s1 and s2 in
the complex plane, i.e., s s s= ( + )/23 1 2 (Fig. 4b). Consider a line passing through s3 and directed at the angle π /4 with respect to the
real axis. Then the root lying above this line corresponds to the frequency ωn, whereas the other root corresponds to the frequency
ωn+1. Thus, if s s s s(Im − Im ) > (Re − Re )1 3 1 3 , then s ω= n1 , s ω= n2 +1, and vice versa.

4. Convergence study

Convergence was studied independently for both plate configurations. Since the eigenfrequency calculation for a single plate
requires more numerical parameters, we will present results of the convergence study for this case only.

Analysis is conducted for parameters

D μ M L= 23.9, = 0.00012, = 1.2, = 300,x (31)

and various Ly.
First, we have studied the number of basic modes Nx, Ny. For the chordwise number Nx, calculations yield the result similar to

Fig. 4. Cycling of coalescing frequencies in the original method (a) and overcoming of the cycling by the modified method (b). Points represent frequency loci with
iterations in the case of the coupled-mode flutter.
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the two-dimensional case (Vedeneev, 2012): Nx equal to the highest frequency of interest gives the accurate solution. Namely, since
the first four frequencies are calculated in this study, we computed the most representative pieces of flutter boundaries with
N = 4, …, 8x , and found that Nx=4 gives a well-converged results. This is naturally explained by the following. On one hand, the
coupled-mode flutter boundary is formed by the coupling of the first two modes, and four basic functions give accurate results for
these modes. On the other hand, single-mode flutter occurs due to negative aerodynamic damping of each mode, without significant
influence of other modes. That is why the minimum number of modes is enough for accurate calculation of flutter boundaries, while
the most important is the correct calculation of the aerodynamic damping.

Next, consider spanwise number of basic functions Ny. It was argued above that for the case of series of plates Ny=1 is enough,
because mode shapes in the flow and in vacuum along the spanwise direction are not changes and thus normal to each other.
However, for a single plate this is not the case. Calculations with N = 2, …, 4y show that flutter boundaries are almost unchanged,
and Ny=2 is enough for accurate calculations.

Now, let us study the convergence in other parameters of the numerical procedure. We choose basic parameters ε = 10−4, q=8,
r=2, and m=2. Then, a series of calculations with higher values of each parameter is conducted to ensure the convergence.
Calculations are performed for the problem parameters (31) and L = 1000y , 500, and 200.

Fig. 5 shows the convergence of real and imaginary parts of four frequencies, ω1
1, ω2

1, ω3
1, and ω4

1 in ε (29). Upper plots show real
and imaginary parts of the frequencies, while bottom plots show their inaccuracies relative to the previous value of ε as:

δ ε ω ε ω ε
ω ε

δ ε ω ε ω ε
ω ε

( ) = Re ( ) − Re (10 × )
Re ( )

, ( ) = Im ( ) − Im (10 × )
Im ( )

.Re Im
(32)

In subsequent calculations we choose ε = 10−4, which yields satisfactory accuracy.
Next, consider convergence in the number of integration points q of the outer integral (15) per shortest half-wave taken into

Fig. 5. Convergence in the relative inaccuracy ε. Frequencies ωj
1, j = 1, …, 4, and relative inaccuracies for parameters (31) and Ly=200, 500, and 1000 are shown.
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account by the Bubnov–Galerkin method, shown in Fig. 6. The total number of points for calculating the outer integral is qN x and
qNy in the x and y directions, respectively. It is seen that q=6 is enough for obtaining accurate results.

Fig. 7 shows the convergence in the parameter r of the inner integral (19) calculation. Below we choose r=3, according to the
results shown in Fig. 7.

Finally, shown in Fig. 8 is the convergence in the parameter m of calculating inner integrals over side triangles. We choose m=3,
which, as can be seen, yields satisfactory accuracy.

As an illustration of the iterative process, Fig. 9a and b shows the convergence of the frequency ω2
1 of a series of plates for

Ly=1000 and 500 versus the iteration number p. Fig. 9c shows the value of A ω|det ( )|2
1 versus the iteration number. Note that, as

described above, the iterations are finished when the condition (29) is satisfied, but additionally in each calculation it was checked
that real and imaginary parts of the frequency tend to constant values, which is visually seen in Fig. 9. Similarly, the convergence was
checked for other frequencies for various parameter values.

Based on the convergence study, we choose the following parameters of the numerical method: Nx=4, Ny=2, q=6, r=3, m=3, and
ε = 10−4. These values are used below in calculations of the stability boundaries.

5. Results

Stability boundaries (i.e., level lines ωIm = 0j
1 ) are calculated for the first four eigenfrequencies ωj

1 ( j = 1, …, 4) in the Lx–Ly–M
space. All calculations are conducted for parameters

D μ= 23.9, = 0.00012, (33)

Fig. 6. Convergence in the parameter q governing calculation of the outer integral. Frequencies ωj
1, j = 1, …, 4, and relative inaccuracies for parameters (31) and

Ly=200, 500, and 1000 are shown.
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which correspond to a steel plate in an air flow at the altitude 3000 m above sea level. Aluminium plate at the altitude 11 000 m,
where the air is more rarified, corresponds to close values D=25.9, μ = 0.00012, so that parameters (33) can be considered as
representative for this case too.

5.1. First mode flutter boundary

Consider the stability boundaries in the first mode (frequency ω1
1), shown in the Lx–M plane in Fig. 10 for Ly=1000, 500, 450,

400, 350, and 300. The region of M < 1.5 is shown. Solid curves represent series of plates, while dashed represent single plate.
Maximum chordwise plate length Lxmax, at which the plate is stable for any spanwise widths Ly, equals to 57 and corresponds to
L = ∞y (Vedeneev, 2012). It is seen that for L L>x xmax and sufficiently large Ly there exists a segment M L L M M L L*( , ) < < **( , )x y x y ,
in which the plate is unstable in the first mode. Note that stability boundaries for Ly=1000 for series of plates and single plate
coincide with each other and almost coincide with the boundary calculated by Vedeneev (2012) in the two-dimensional formulation,
i.e., for L = ∞y . When spanwise width Ly decreases, the Mach number range, where the plate is unstable, narrows, and starting from
a certain L L=y ys the instability region is split into two isolated regions. The first, corresponding to smaller Lx, represents single
mode flutter, while the second represents the coupled mode flutter. Fig. 11 shows the split in more details; the saddle point of the
instability boundary at L ≈ 425ys for the series of plates and at L ≈ 356ys for single plate is clearly seen. When Ly is further decreased,
the size of the single mode flutter region decreases and tends to the point L ≈ 92x , M ≈ 1.23 for the series of plates, and L ≈ 95x ,
M ≈ 1.23 for the single plate. For the series of plates, at Ly=313 the single mode flutter boundary is contracted to this point and

Fig. 7. Convergence in the parameter r governing calculation of the inner integral. Frequencies ωj
1, j = 1, …, 4, and relative inaccuracies for parameters (31) and

Ly=200, 500, and 1000 are shown.
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disappears; for the single plate the contraction and disappearance occur at Ly=291. The coupled mode flutter boundary, when
decreasing Ly, is changed much slower, moving to larger Lx.

Dotted curves in Fig. 10 represent stability boundaries, calculated through the piston theory, which can be obtained by neglecting
the integral term in (19). It is seen that the single mode flutter region is absent, which is in agreement with asymptotic results
(Vedeneev, 2005) and two-dimensional study (Vedeneev, 2012), whereas coupled mode flutter boundaries, calculated through the
piston and potential flow theories, become close to each other when decreasing Ly.

Fig. 12 shows flutter boundaries in the range M1.5 < < 5.0 for the same values of Ly. Results for series of plates and single plate
are almost identical. Calculations through the piston theory are shown by dotted curves. It is seen that single mode flutter in the first
mode is absent at these Mach numbers, whereas coupled mode flutter boundaries obtained through potential flow and piston
theories almost coincide.

5.2. Higher modes

Now, consider results for higher modes. Fig. 13 shows flutter region in the second mode (frequency ω2
1) at Ly=1000, 400, 300,

250, and 200. These regions are bounded from the right by values of Lx, at which coupled mode flutter occurs: the first mode
becomes growing, and the second becomes damped. As for the first mode, the decrease of Ly yields the compression of the single

Fig. 8. Convergence in the parameter m governing calculation of integrals over small triangles. Frequencies ωj
1, j = 1, …, 4, and relative inaccuracies for parameters

(31) and Ly=200, 500, and 1000 are shown.
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Fig. 9. Frequency ω2
1 (a and b), A ω|det ( )|2

1 (c) versus the iteration number p at Ly=1000 (dashed curves) and 500 (solid curves).

Fig. 10. Stability boundaries of the mode (1,1) (frequency ω1
1 ) in the Lx–M plane for various Ly at M1.1 < < 1.5. Series of plates (solid curves) and single plate

(dashed curves). Boundaries obtained through the piston theory are shown by dotted curves.
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mode flutter region. At L ≈ 174y (series of plates), and L ≈ 185y (single plate) it is contracted to the point L ≈ 130x , M ≈ 1.41 (series of
plates), and L ≈ 129x , M ≈ 1.37 (single plate), and disappears for lower Ly.

In contrast to the first two modes, flutter boundaries in the 3rd and the 4th modes, which do not take part in the generation of the
coupled mode flutter, for L = ∞y have asymptotes M* = 1, M** = 2 as L → ∞x (Vedeneev, 2012) (Figs. 14 and 15, respectively).
Flutter boundaries at Ly=1000 are very close to those of the two-dimensional problem. When Ly decreases, their behaviour is
different for the two plate configurations. In the case of a series of plates, flutter boundaries are shifted to higher M and become
bounded in Lx direction. Further, as for single mode flutter in the first two modes, flutter boundaries are contracted to certain points
and disappear. For the 3rd mode, the flutter region disappears at L ≈ 105y , and the boundary is contracted to the point L ≈ 177x ,
M ≈ 1.6. Similarly, the instability region of the 4th mode disappears at L ≈ 79y , and its boundary is contracted to the point L ≈ 200x ,
M ≈ 1.73.

In the case of a single plate, flutter regions also become bounded, but they are ‘embedded’ inside of each other (Figs. 14 and 15),
and Mach numbers corresponding to instability do not grow when Ly decreases. Flutter region in the 3rd mode disappears at
L ≈ 131y , and the boundary is contracted to the point L ≈ 153x , M ≈ 1.47. Instability region in the fourth mode disappears at
L ≈ 111y , and its boundary is contracted to the point L ≈ 170x , M ≈ 1.53.

5.3. Comparison with other studies

First, let us compare these results with Movchan's solution, given by formula (3.8) of Movchan (1957), which after

Fig. 11. Stability boundaries of the mode (1,1) in the Lx–M plane for Ly near the split of the single mode and coupled mode flutter boundaries. Series of plates (a)
and single plate (b). Saddle point of the instability boundary is shown by the circle.

Fig. 12. Stability boundaries of the mode (1,1) in the Lx–M plane for various Ly at M1.5 < < 5.0. Series of plates (solid curves) and single plate (dashed curves); for
Ly>350 the curves for both cases coincide. Boundaries obtained through the piston theory are shown by dotted curves.
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nondimensionalisation is written in the following form:
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He used the piston theory in the form

p μ M w
x

w
t

= ∂
∂

+ ∂
∂

.
⎛
⎝⎜

⎞
⎠⎟ (35)

Modification of the piston theory, which is more suitable for M < 3, has an additional multiplier M M/ − 12 , i.e.

p M
β

M w
x

w
t

= μ ∂
∂

+ ∂
∂

.
⎛
⎝⎜

⎞
⎠⎟ (36)

Assuming that the aerodynamic damping does not essentially influence the coupled mode flutter, the boundary obtained through this

modification is derived from (34) by changing M to M M/ − 12 2 in the left-hand side. Formula (36) is restored by the present
method when neglecting the integral term in (19) and was used in a special series of calculations.

Fig. 16 shows original and modified flutter boundaries (34) (dashed and dash-and-dot curves), and flutter boundaries calculated
by the present method by using the piston and potential flow theories (dotted and solid curves) for the first mode. Calculations are
conducted for a series of plates for Ly=350 and 1000. It is seen that at high Mach numbers, M > 3, all four theories yield the same

Fig. 13. Stability boundaries of the mode (2,1) (frequency ω2
1) in the Lx–M plane for various Ly. Series of plates (solid curves) and single plate (dashed curves).

Fig. 14. Stability boundaries of the mode (3,1) (frequency ω3
1) in the Lx–M plane for various Ly. Series of plates (solid curves) and single plate (dashed curves).
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results. For M < 3, the original version of the piston theory used by Movchan (1957), gives a significant inaccuracy. However, the
modified version is accurate down to M ≈ 1.6. At lower M, the piston theory is not applicable for calculation of the first mode flutter
boundary because it is not able to predict the single mode flutter, which yields significant enlargement of the instability boundary in
the first mode. For the flutter in higher modes, the piston theory does not yield instability, and thus is never applicable, since flutter
in such modes is always of single-mode type, except for the case of plates essentially elongated in the flow direction, when the
coupled mode flutter occurs not in the first, but in higher mode.

Next, let us compare results of the present study with those of Cunnigham (1967), who calculated flutter boundaries at M=1.3
through the potential flow theory for different ratios L L/x y. He used different dimensionless parameters and plotted flutter

boundaries in the plane μ1/ * – ω l v* */ *1 , where asterisks represent the parameters of Cunnigham (1967), which are expressed through
the parameters of the present study as follows:
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His Fig. 3a–d shows flutter boundaries in the first four modes, which are reproduced as solid curves in Fig. 17. Our parameters (33)
correspond to the dashed curve in Fig. 17. Flutter boundaries at the condition of a given L L/x y ratio, found from Figs. 10, and 13–15,
are shown in Fig. 17 by symbols. It can be seen that in all cases the symbols are located very close to the intersection of solid and
dashed curves; i.e., the correlation between Cunnigham (1967) and the present study is very good. For the case of L L/ = 1/2x y , he
does not have the 3rd and 4th mode boundaries plotted, and for L L/ = 1x y he does not have the 4th mode boundary; those
boundaries probably were not noticed in his calculations.

The results of this study explain why the order of the first mode flutter boundary is changed compared to other modes boundaries
in Cunningham's Fig. 3 (our Fig. 17) when L L/x y ratio is increased. This occurs because for small L L/x y, the point is located at the left
piece of the boundary shown in Fig. 10. When L L/x y is increased, the point moves to higher Lx in Fig. 10, being close to the coupled-

Fig. 15. Stability boundaries of the mode (4,1) (frequency ω4
1) in the Lx–M plane for various Ly. Series of plates (solid curves) and single plate (dashed curves).

Fig. 16. Comparison of flutter boundaries in the first mode obtained by the potential flow theory (series of plates, solid curves) and several versions of the piston
theory: Movchan's boundary (34), its modification, and results of the present study obtained through the piston theory (36) (dashed, dash-and-dot, and dotted curves,
respectively).

S. Shitov, V. Vedeneev Journal of Fluids and Structures 69 (2017) 154–173

170



mode flutter boundary.
Finally, let us compare results with the asymptotic theory of single mode flutter (Vedeneev, 2006), which will explain the shift of

single mode flutter regions to higher Mach numbers when Ly decreases in the case of the series of plates. When the plate length and
width Lx, Ly are large, eigenmodes can be represented as cycled reflections of travelling waves from the plate edges (Kulikovskii,
2006). The criterion of the eigenmode growth depends on the angle between the wave vector and the flow direction. The decrease of
Ly yields the increase of this angle, which leads to the increase of Mach numbers where the eigenmode is amplified. Quantitatively,
the results of Vedeneev (2006) yield the following single mode flutter boundaries M L L M M L L*( , ) < < **( , )x y x y for large plates:
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(37)

where m and n are the numbers of half-waves in the x and y directions, and

k mπ L nπ L= ( / ) + ( / ) .x y0
2 2

Fig. 18 shows the comparison of boundaries obtained numerically (thick curves) and through asymptotic formulae (37) (thin
curves). Fig. 18a shows flutter boundaries in the 3rd mode for Ly=1000, 200, 130, and 110 (solid, dashed, dash-and-dot, and dotted
curves). Fig. 18b shows the same boundaries for the 4th mode for Ly=1000, 200, 100, and 82. As can be seen, the increase of Mach
numbers in the ‘central’ part of the flutter boundary, L = 100…300x , is correctly captured by the asymptotic solution. The difference
is significant at small Lx, where the condition of large plate lengths in the x-direction is not satisfied, and at large M, which are
achieved only at sufficiently small Ly so that the condition of large plate width in the y-direction is broken.

Thus, the asymptotic theory of Vedeneev (2006) explains the shift to higher M of single mode flutter boundaries in the third and
fourth modes in the case of series of plates. Apparently, in the case of the single plate, the absence of this shift is due to different
aerodynamics, which is not taken into account by the asymptotic theory.

6. Conclusions

In this paper we numerically investigated flutter boundaries of a simply supported rectangular plate in the first four eigenmodes
through potential flow aerodynamics. Two plate configurations are considered: series of plates oscillating simultaneously, and a
single plate. While for a two-dimensional plate (L = ∞y ) the first mode flutter boundary consists of single mode and coupled mode
flutter boundaries attached to each other, for small Ly it is split into two isolated flutter regions in the parameter space. For
sufficiently small Ly, single mode flutter boundaries for the first two eigenmodes contract to a point and disappear, whereas a
coupled mode flutter boundary remains and moves to higher plate lengths Lx.

Fig. 17. Comparison of the single mode flutter boundaries with the results obtained by Cunnigham (1967). His data are shown by solid curves (from his Fig. 3a–d);
numbers denote the eigenmode number of each boundary. Dashed curves represent the parameters (33). Results of the present study are shown as symbols for the
first (•), second (▴), third (■), and fourth (♦) mode. L L/ = 0x y (a), 1/4 (b), 1/2 (c), and 1 (d).
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For the third and the fourth modes of the series of plates, the decrease of Ly yields the shift of the single mode flutter boundary to
higher M, which is explained by the asymptotic theory for long plates. For a single plate the shift to higher M is absent, which is a
consequence of the different aerodynamics of series of plates and a single plate.

Results of the present paper can be used directly in the design of skin panels for flight vehicles. Also, they provide important
information on the linear growth mechanism, which is significant in the analysis of nonlinear limit cycle oscillations. In particular,
the split of the instability boundary of the first mode for L < 356y allows using the operating zone in the gap of stability at

L170 < < 250x , where the first mode is damped.
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