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Single-mode flutter is a type of panel flutter that occurs at low supersonic speeds without interaction
between oscillation modes. In this paper, we investigate the single-mode flutter of thin elastic plates
of different shapes exposed on one side to a perfect inviscid gas flow. We use the energy method in
our study. Rectangular, trapezoidal, and parallelogram plates are considered. We obtained that the
flutter boundaries for trapezoidal plates vary slightly in comparison with the rectangular plates.
To the contrary, even at a small curvature angle the aeroelastic stability increases significantly for
parallelogram plates.
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1. INTRODUCTION

Panel flutter is a phenomenon of the stability loss and intensive vibrations of aircraft skin panels
appearing under the action of the air flow at high flight speeds. Usually, panel flutter does not
lead to the immediate destruction of the aircraft, but it can lead to the accumulation of fatigue
damage in the panels or an increased noise level. Reducing the noise level may be achieved by
additional panel damping or by using special noise-absorbing materials [1].

There are two types of panel flutter. The first one is coupled-mode flutter, which is due to the
interaction of two oscillation eigenmodes. This type of panel flutter has been studied in detail
using the piston theory. The second type is single-mode flutter. In this case, coalescence of the
eigenfrequencies and a significant change in the oscillation form do not take place. Single-mode
flutter arises at low supersonic speed, where the piston theory is inapplicable. Therefore, it is
necessary to use more complex aerodynamic models. It was believed that this type of flutter
cannot occur in real structures due to its suppression by structural damping, but recent studies
[2] prove the possibility of its occurrence.

An important problem is to find ways to suppress single-mode flutter. The effect of structural
damping on plate flutter was investigated in Ref. [3]. It was shown that when damping is taken
into account the length of the plate increases and Mach numbers (M) leading to flutter decrease.
However, for long plates and plates made of light materials, the damping level necessary to
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suppress the flutter is so high that to obtain such a level some additional damping mechanisms
are needed.

The purpose of this paper is to investigate the possibility of suppressing single-mode flutter
by designing aircraft skin panels in complex shapes. We do not take into account other fac-
tors, including the effect of the boundary layer, in order to distinguish only the influence of the
panel shape on the single-mode flutter factor. We note that the flutter of a plate with a boundary
layer has been previously investigated (see [4–10]), where it was shown that in some cases the
boundary layer can effectively suppress the flutter.

Since a single skin panel forming part of the wing surface (Fig. 1) is considered, it is assumed
that the shock wave is not formed before it and the flow over the panel is locally homogeneous.
In this case, the shock wave in front of the wing does not matter in the local formulation of the
problem under consideration.

In this study, the energy method is used [11]. In the case of single-mode flutter, the loss
of stability occurs without an interaction between modes [2,3], and to predict flutter it is only
necessary to determine the aerodynamic damping of each oscillation mode. The calculation of
this damping is a purely aerodynamic problem. Thus, the problems of the theory of elasticity
and aerodynamics are uncoupled: the eigenfrequencies and the panel natural oscillation modes
in vacuum are first calculated, and then the aerodynamic damping of mode is calculated. There-
fore, we assume that the eigenfrequencies and the panel oscillation modes in vacuum and in
the flow coincide. The described method is also applicable to the prediction of the flutter of the
compressor blades of gas turbine engines and a number of other structures with insignificantly
varying dynamic properties under the influence of the flow [12,13].

2. PROBLEM STATEMENT

The stability of a thin elastic plate exposed on one side to the homogeneous supersonic flow of
perfect inviscid gas is investigated (Fig. 2). We consider single plates of rectangular, trapezoidal,
and parallelogram forms simply supported along all edges. Also, an infinite series of rectangu-
lar plates connected to each other and simply supported at the leading and trailing edges are
considered.

The present paper describes the calculating method for single-mode flutter being tested [11]
for a two-dimensional problem and having proved its effectiveness. With this type of flutter, the
gas flow effect on the plate oscillation type is small and leads only to aerodynamic damping,
positive or negative. This method is verified for the flutter problem of a series of connected
plates, for which the results of calculating flutter in the exact formulation are known [14], and
then it is applied to the calculation of single plates of various shapes.

Since the frequency and the oscillation mode shape are known from the calculation of the
plate oscillations in vacuum, the motion of the plate in the flow is forcefully predetermined in its

FIG. 1: Schematic location of the skin panel on the wing surface of an aircraft (top view)
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FIG. 2: Geometrical description of the problem

eigenmode, and the unsteady plate flow at its given oscillations is calculated. As a result of the
solution, the work done by pressure forces at one oscillation period is calculated. The criterion
of flutter is the positivity of this work.

3. METHOD OF CALCULATING SINGLE-MODE FLUTTER

3.1 Energy Method

The plate motion equation [15] has the following form:
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modulus;ν is Poisson’s ratio;ρ is the density of the material;h is the thickness of the plate; and
p is the pressure acting on the plate surface. Having multiplied both sides of Eq. (1) by∂w/∂t
and having taken the double integral over the region bounded by the contour of the plate, we
obtain the energy equation of the plate as follows:
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whereN(t) is the pressure power

N (t) =
∫

S

p (x, y, z, t) v (x, z, t) ds (4)

whereS is the surface of the plate,p = −pn; n is the normal to the plate surface; andv is the
velocity of the plate points.

Then, taking into account Eq. (2) and expressions (3) and (4), the change in energy over the
oscillation period is defined as follows:

∆E = E (T )− E (0) = U =
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p (x, y, z, t) v (x, z, t) dsdt (5)
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whereT is the oscillation period.
Since we calculate the single-mode flutter, the eigenmodes and oscillation frequencies of the

plate in the flow and in the vacuum coincide and are calculated by standard methods. WorkU
of pressure forces [Eq. (5)] during the oscillation cycle is calculated as follows. A model of gas
flow over the plate is considered. The oscillations of the plate are set in the form of displacement
of the corresponding surface of the computational domain (accompanied by the deformation of
the computational grid) according to the eigenmodes in the vacuum:

w (x, z, t) = W (x, z) sin (ωt) (6)

whereW (x, z) is the mode shape; andω is the circular eigenfrequency.
The oscillation of the plate leads to the perturbation of the gas pressure. If some time after

the start of the oscillations the response of the flow to the harmonic motion of the plate becomes
harmonic, then the calculation is stopped and workU , done by the gas pressure during the last
oscillation period, is calculated. Calculations of the oscillating plate flow were conducted using
the control volume method in ANSYS CFX (ANSYS, Inc., Canonsburg, Pennsylvania, USA).
Calculation of Eq. (5), which is based on the calculation results, was performed using an in-house
program [12,13].

3.2 Criterion of Flutter

Let us show that sign of the parameterU is the flutter criterion. The motion of the free plate in
the gas flow in the linear approximation has the following form:

w (x, z, t) = W (x, z) sin (ωt) eδt (7)

whereδ is the oscillation growth rate. Substituting Eq. (7) into Eq. (5) and using Eq. (3), we
obtain the relationship betweenδ andU as follows:

U = ρhω2e2δT − 1
2

∫

S

W 2ds (8)

Thus,δ > 0 for U > 0 andδ < 0 for U < 0. Consequently, the sign ofU is the criterion of
flutter. If parameterU is positive, then the energy flow is directed from the gas to the plate, and
the oscillations of the plate will be amplified. Otherwise, the energy flow will be directed from
the plate to the gas. In this case, the oscillations of the plate will decay. Under the assumption
that |δT | ¿ 1, and expanding the exponential in Eq. (8) by the Taylor formula and discarding
the higher terms, we obtain:

δ (U) =
UT

4π2ρh ∫S W 2 (x, z) ds

Thus, for a small growth rate, it is proportional to the effect created by the gas.

3.3 Aerodynamic Calculation

The computational domain is shown in Fig. 3. The size of the domain across the flow and the
height of the domain are chosen such that the disturbances of the flow after reflection from
the walls do not get on the plate, with the result that the flow around the plate corresponds to
an unbounded flow. Inside the region, the Navier–Stokes equations are solved by the control
volume method. The speed, pressure, and temperature of the gas are set at the inlet; the values
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FIG. 3: Computational domain: (a) rectangular plate; (b) trapezoidal plate; (c) parallelogram plate

correspond to the standard atmosphere at sea level. The boundary conditions at the outlet are not
set. On the remaining walls of the computational area (including the plate), the slip condition is
given: the tangential stress and the normal velocity to the surface are zero. With this formulation,
no boundary layer is formed on the plate surface and the effect of viscosity does not appear. The
initial condition is an unperturbed homogeneous flow in the entire region. ANSYS ICEM CFD
was used to construct the geometry and grid, and ANSYS CFX was used for the calculations.

4. NATURAL MODE SHAPES AND FREQUENCIES OF PLATES

We consider steel plates with thicknessh = 0.001 m. The properties of the plate material corre-
spond to steel:E = 2 × 1011 Pa,ν = 0.3, andρ = 7800 kg/m3.

4.1 Rectangular Plates

For a rectangular plate simply supported at all edges, eigenformsW (x, z) are obtained as fol-
lows:

W (x, z) = A sin
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)
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)

where|A| ¿ 1 is the normalized amplitude of the oscillations;n andm are the number of half-
waves in the direction of flow and across it, respectively; andX andZ are the length and width
of the plate, respectively. Eigenfrequencyω corresponding to this form is given by the following
formula:

ω =

√
D

ρh

[(nπ

X

)2
+

(mπ

Z

)2
]

4.2 Plates in the Shape of a Parallelogram and Trapezoid

The eigenfrequencies and mode shapes of the plates were calculated in ABAQUS (Dassault
Syst̀emes, V́elizy-Villacoublay, France) by the finite-element method. The geometry of the plates
varied such that the area remained unchanged (Fig. 4). Modes (1,1) and (2,1) were investigated
for each plate (n = 1, m = 1 andn = 2, m = 1, respectively). The calculated eigenmodes are
shown in Figs. 5 and 6. Using the in-house software [12,13] Lagrange interpolation polynomi-
als were constructed for the mode shapes. Using these polynomials, the calculated oscillation
modes were transferred to ANSYS CFX. The results of the calculations of the corresponding
eigenfrequencies are given in Tables 1 and 2 (physical frequenciesΩ associated with circular
frequencies through a relationshipω = 2πΩ are given).
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FIG. 4: Plate geometry: (a) trapezoid; (b) parallelogram

FIG. 5: Natural mode shapes of trapezoidal plates: (a) mode (1,1); (b) mode (2,1)

FIG. 6: Natural mode shapes of parallelogram plates: (a) mode (1,1); (b) mode (2,1)
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TABLE 1: Temporal natural frequencies of the trapezoidal plates

α
Ω(s−1)

Mode (1,1) Mode (2,1)
85 68.6 251.8
80 68.7 251.7
75 68.7 251.4
70 68.9 251.2
60 69.3 250.7
50 70.1 251.1

TABLE 2: Temporal natural frequencies of the parallelogram plates

α
Ω(s−1)

Mode (1,1) Mode (2,1)
80 70.3 259.3
70 75.9 283.4
60 87.1 332.5
55 96 369.5
50 108.2 425.1

5. CONVERGENCE STUDY

A single rectangular plate of 0.2× 0.54 m size was considered. The parameters of the numerical
simulation of an oscillating plate in gas flow were changed in the convergence study.

First, the dependence of the work done by pressure on the calculation period was investigated
(Fig. 7). The calculation used a grid consisting of 81 (the number of nodes along thex-axis)×125

FIG. 7: Work done by pressure forces versus the period number

Volume 48, Issue 1, 2017



104 Abdukhakimov & Vedeneev

(the number of nodes along they-axis)×76 (the number of nodes along thez-axis) nodes. The
number of nodes alongx is a + b + c, wherea is the number of nodes before the plate,b is
the number of nodes on the plate, andc is the number of nodes after the plate (Fig. 8). As can
be seen in Fig. 7, the change in work becomes negligibly small beginning with the third period,
that is, the flow response to the harmonic motion of the plate also becomes harmonic. Therefore,
before we consider the work done over the third period.

Then, the convergence for the change in the number of grid nodes, the number of time steps
on the oscillation period of the plate, and the residual of the solution to the spatial problem
at each time step was investigated. The distribution of the parameters of the numerical simu-
lation over the computation cases is given in Table 3. Cases 1–3 differ in the computational
grid. Case 4 differs from cases 1–3 both by the computational grid and by the residual of the
boundary problem solution. In case 5, the calculations were conducted by decreasing the time
step by 2× in comparison with case 2. In case 6, the value of the residual of the solution for the
simulation was set 5× greater than in case 2. Figure 9 presents work versus the Mach number
for various computational cases. It can be seen that the flutter boundaries differ slightly. This
proves the convergence of the solution with respect to all parameters of the numerical simula-
tion. In further calculations, the distribution of parameters corresponding to computation case 2
is used.

FIG. 8: Splitting the grid along thex axis

TABLE 3: Computation cases

Computation
Case

Grid (Node)
Time

Steps per
Period

ResidualNumber of Nodes inx Number
of Nodes

in y

Number
of Nodes

in z
a (before
the plate)

b (at the
plate)

c (after
the plate)

1 15 41 15 249 76 100 1 × 10−4

2 15 51 15 125 76 100 1 × 10−4

3 15 71 15 125 76 100 1 × 10−4

4 40 91 40 125 76 100 1.5× 10−4

5 15 51 15 125 76 200 1 × 10−4

6 15 51 15 125 76 100 5 × 10−4
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FIG. 9: Work done by pressure versus M for various computation cases

6. VERIFICATION

We consider an infinite series of rectangular plates pinned and connected to each other, with
leading and trailing edges also simply supported. The results of the calculations are compared
with Ref. [14], where the same problem was considered and the coupled problem of plate oscil-
lations in perfect inviscid gas flow was solved (Fig. 10). In Fig. 10, the Mach number is plotted
at the vertical axis, and dimensionless plate lengthLx (the length related to the thickness) is
plotted at the horizontal axis. The lines show the boundaries of the instability region calculated
numerically by the Bubnov–Galerkin method using the exact theory of potential gas flow [14],
and the squares indicate the results of the calculation using the method described in this paper.
At Lx > 57 and at large enoughLy, there is a range of M numbers with the plate unstable in

FIG. 10: Flutter boundary in the first mode
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the first mode. With a decrease inLy, this range narrows. AtLy ≈ 425 the instability region is
divided into two sub-regions. The first one corresponds to single-mode flutter and is situated in
the region of smallerLx, the second sub-region corresponds to coupled-mode flutter.

A comparison of the results obtained in this paper and the results of Ref. [14] shows satisfac-
tory agreement. For our case, atZ = 0.54 m andh = 0.001 m, dimensionless plate widthLy =
500 is the most suitable for comparison. AtLx > 200 the results of the calculation are affected
by the coupled-mode flutter region: the assumption that the influence of the flow on the plate is
insignificant becomes incorrect in this region, and the plate mode shape in the flow changes in
comparison with the vacuum. For this reason, atLx > 200 there is a discrepancy between the
coupled aeroelasticity problem solutions [14] and the method used here (Fig. 10).

7. CALCULATION RESULTS

7.1 Calculation Results of Single Rectangular Plates

First, we considered single rectangular plates of 0.2× 0.54 m size. Modes (1,1) and (2,1) were
investigated. The calculation results for mode (1,1) were compared with the results for the cor-
responding series of plates. Figure 11(a) shows the work done by pressure versus M for mode

FIG. 11: Work done by pressure versus M (single rectangular plate): (a) mode (1,1); (b) mode (2,1)
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(1,1). The flutter appears at 1.10≤ M ≤ 1.32, whereas at M< 1.10 and M> 1.32 the plate is
stable with respect to this oscillation mode. For mode (2,1) the range of M numbers where flutter
occurs is wider than for mode (1,1). As can be seen in Fig. 11(b), the flutter arises at 1.13≤ M
≤ 1.48, whereas at M< 1.13 and M> 1.48 we observe stability in this mode. Comparison of
the calculation results for a single rectangular plate and a corresponding series of plates (Fig. 12)
showed that flutter for the series of plates occurs in a narrower range of M numbers than for a
single plate.

7.2 Calculation Results of Trapezoidal Plates

We further studied single plates with the shape of an isosceles trapezoid for different values of
angleα [see Fig. 4(a)], in which the plate area remained unchanged. The dependence of the work
done by pressure on M for modes (1,1) and (2,1) was investigated. The results of the calculations
for trapezoidal and rectangular plates were compared.

The results of calculations [Fig. 13(a)] for mode (1,1) showed that for plates with anglesα =
85°, 80°, 75°, 70°, and 60°, flutter was observed at 1.1≤ M ≤ 1.32, and for plates withα =
50° flutter was at 1.1≤M ≤ 1.31. Thus, the change in angleα causes an insignificant change in
the flutter boundary for mode (1,1). A similar situation was observed for mode (2,1). As can be
seen in Fig. 13(b), for plates with angleα = 80°, flutter occurs at 1.13≤ M ≤ 1.48, for plates
with α = 70° flutter occurs at 1.14≤M ≤ 1.46, for plates withα = 60° flutter occurs at 1.13≤
M ≤ 1.45, and for plates withα = 50° flutter occurs at 1.13≤ M ≤ 1.46.

Comparison of the results of the calculations [Figs. 13(a) and 13(b)] for plates in the shape
of a trapezoid and a rectangle showed that the boundaries of the flutter of trapezoidal plates at
different values of angleα were close to those of the rectangular plates. The work, and hence the
oscillation growth rates vary slightly. Thus, it can be concluded that making aircraft skin panels
in a trapezoidal shape is not effective in preventing single-mode flutter.

7.3 Calculation Results of Parallelogram Plates

Plates in the shape of a parallelogram for different values of angleβ were considered [see
Fig. 4(b)]. Modes (1,1) and (2,1) for each plate were investigated. The results for plates in the

FIG. 12: Comparison of a single plate and a series of plates [mode (1.1)]
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FIG. 13: Work done by pressure versus M (comparison of the calculation results of rectangular and trape-
zoidal plates): (a) mode (1,1); (b) mode (2,1)

form of a parallelogram and a rectangle, as for the trapezoid, were compared. Calculations for
mode (1,1) showed [Fig. 14(a)] that flutter appears only for plates with angleβ = 80° at 1.12≤
M ≤ 1.32. At M < 1.12 and M>1.32 for a plate withβ = 80°, and at M≤ 1.5 for plates with
β = 50°, 55°, 60°, and 70°, the calculated work was negative, that is, stability in this mode was
observed. The results for different values of anglesβ differed substantially from each other.

As can be seen in Fig. 14(b), in the calculation of mode (2,1), flutter is observed for the plate
with β = 55° at 1.53≤ M ≤ 1.65, for the plate withβ = 60° at 1.4≤ M ≤ 1.64, for the plate
with β = 70° at 1.22≤ M ≤ 1.56, and for the plate withβ = 80° at 1.15≤ M ≤ 1.5. With a
decrease in angleβ, the flutter boundaries shift toward larger Mach numbers, and the length of
the Mach number range, where flutter occurs, decreases.

Thus, as the value of angleβ decreases the difference between the flutter boundaries of
the plates in the shape of a parallelogram and a rectangle increases. The comparison of the
corresponding calculation results shows [Figs. 14(a) and 14(b)] that making aircraft skin panels
in the shape of a parallelogram, even at a small curvature angle, substantially increases their
aeroelastic stability at transonic and low supersonic flow velocities.

TsAGI Science Journal



Investigation of Single-Mode Flutter of Various Shape Plates 109

FIG. 14: Work done by pressure versus M (a plate in the form of a parallelogram): (a) mode (1,1); (b)
mode (2,1)

8. CONCLUSIONS

By using the energy method, we have studied the stability of plates with rectangular, trape-
zoidal, and parallelogram shapes in a transonic gas flow, where single-mode flutter occurrence
is possible. The comparison between the calculations for an infinite series of rectangular plates
and the results from Ref. [14], where the coupled problem of aeroelastic plate oscillations was
solved, verifies the described method and its applicability to plates of complex shapes. The com-
parison of the calculation results for plates in the shape of a trapezoid and a parallelogram and for
rectangular plates shows that the flutter boundaries of the trapezoidal plates are close to those of
rectangular plates, and that the flutter boundaries of the parallelogram plates significantly differ
from the boundaries of the rectangular plates. The results obtained show that making aircraft skin
panels in the shape of a parallelogram can be an effective method of suppressing single-mode
flutter at transonic and low supersonic flight speeds.

ACKNOWLEDGMENT

This study was supported by a grant from the President of Russian Federation (Grant No. MD-
4544.2015.1).

Volume 48, Issue 1, 2017



110 Abdukhakimov & Vedeneev

REFERENCES

1. Zverev, A.Ya., Lesnykh, T.O., and Paranin, G.V., Investigation of the efficiency of application of a
vibration-absorbing material with a reinforcing layer for improving sound insulation of structural ele-
ments of the fuselage,TsAGI Sci. J., 47(2):223–236, 2016.

2. Vedeneev, V.V., Guvernyuk, S.V., Zubkov, A.F., and Kolotnikov, M.E., Experimental investigation of
single-mode panel flutter in supersonic gas flow,Fluid Dyn., 45(2):312–324, 2010.

3. Vedeneev, V.V., Effect of damping on flutter of simply supported and clamped panels at low supersonic
speeds,J. Fluids Struct., 40:366–372, 2013.

4. Bondarev, V.O. and Vedeneev, V.V., Short-wave instability of elastic plates in supersonic flow in the
presence of the boundary layer,J. Fluid Mech., 802:528–552, 2016.

5. Alder, M., Development and validation of a fluid-structure solver for transonic panel flutter,AIAA J.,
53:3509–3521, 2015.

6. Visbal, M., Viscous and inviscid interactions of an oblique shock with a flexible panel,J. Fluids Struct.,
48:27–45, 2014.

7. Vedeneev, V.V., Interaction of the panel flutter with inviscid boundary layer instability in supersonic
flow, J. Fluid Mech., 736:216–249, 2013.

8. Hashimoto, A., Aoyama, T., and Nakamura, Y., Effects of the turbulent boundary layer on panel flutter,
AIAA J., 47(12):2785–2791, 2009.

9. Dowell, E.H., Generalized aerodynamic forces on a flexible plate undergoing transient motion in a
shear flow with an application to panel flutter,AIAA J., 9(5):834–841, 1971.

10. Miles, J.W., On panel flutter in the presence of a boundary layer,J. Aerosp. Sci., 26(2):81–93, 1959.

11. Vedeneev, V.V., Numerical analysis of single mode panel flutter in a viscous gas flow, inProc. of
ASME 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference
on Nanochannels, Microchannels, and Minichannels, Montreal, 2010.

12. Vedeneev, V.V., Kolotnikov, M.E., Makarov, P.V., and Firsanov, V.V., 3D modeling of blade flutter in
modern gas turbine engines,Vestnik SSAU, 3(27):47–56, 2011.

13. Vedeneev, V.V., Kolotnikov, M.E., and Makarov, P.V., Experimental validation of numerical blade flut-
ter prediction,J. Propul. Power, 31(5):1281–1291, 2015.

14. Shitov, S.V. and Vedeneev, V.V., Flutter of a periodically supported elastic strip in a gas flow with a
small supersonic velocity,Mech. Solids, 50(3):318–336, 2015.

15. Vol’mir, A.S., Flexible Plates and Shells, Moscow: Gos. Izd. Tehn.-Teor. Lit., 1956.

Farrukh Adkhamovich Abdukhakimov, Ph.D. Stu-
dent, Lomonosov Moscow State University

Vasily Vladimirovich Vedeneev, Ph.D., Head of
Laboratory, Institute of Mechanics, Lomonosov
Moscow State University

TsAGI Science Journal


