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Nonlinear panel flutter oscillations at transonic and low supersonic flow speed demonstrate rich panel dynamics,

which includes bifurcations of the limit cycle, coexisting of different limit cycles, and nonperiodic oscillations. Passing

through the range of transonic Mach numbers to supersonic cruise speed should be sufficiently fast to avoid

significant fatigue damage. In this study, the sequence of bifurcations of limit cycles when the flow speed is

continuously increasing or decreasing is analyzed. The evolution of limit-cycle oscillations is carefully studied. It is

shown that the most dangerous oscillation regimes, high-frequency periodic or nonperiodic oscillations, are

suppressed if the flowacceleration is sufficiently fast.However, first-mode limit cycle and limit cycle involving internal

1:2 resonance are not affected by the flow acceleration, such that lower accumulation of the fatigue damage in fast

accelerating flow is possible only because of fewer cycles of oscillations, but not because of the decrease of the

limit-cycle amplitude.

I. Introduction

F LUTTER of various structures of flight vehicles, such as control

surfaces and skin panels, at subsonic and high supersonic flow

speed has been studied over many decades and currently is well

understood (except for such features as boundary layer and

aerodynamic heating effect at high speeds). Typically, the flutter

boundary can be calculated through linear structural and

aerodynamic models, and the growth of perturbations in the flutter

regime yields the formation of certain limit-cycle oscillations that can

be analyzed through appropriate nonlinear models. In many cases,

only structural nonlinearity is essential, and the linear aerodynamic

model still gives good accuracy.

On the contrary, flutter at transonic flow (including some portion of

low supersonic speeds) is still a challenging problem. First,

aerodynamic nonlinearity is essential even at small amplitudes (i.e., it

cannot be neglected in the calculation of flutter boundary [1]). Second,

structures of flight vehicles are subject to “transonic dip”, associated

with negative aerodynamic damping of natural modes, where the

instability region significantly expands, and flutter is possible for very

small flow density, which is attained at high altitudes [2,3]. Third,

several natural modes grow simultaneously, which yields complex

nonlinear dynamics of the structure: nonuniqueness of limit cycles and

possible nonperiodic oscillations [4,5].

Because the range ofMach numbers occupied by the transonic dip

is bounded and usually is within 0.95 < M < 1.4 range, the flight

vehicle should pass it as quickly as possible to avoid accumulation of

fatigue damage. However, it is still not known how the acceleration of

the flight vehicle will impact limit-cycle oscillations.

In this paper, we analyze this question of the simplest aeroelastic

model representing flutter of a skin panel, namely, a flat elastic plate

in a uniform airflow. This classical panel flutter problem has been

studied in the 1950–1970s in numerous papers, where linear piston
theory was employed for modeling high-speed supersonic flow
[6–11]. The interest in this problem was renewed in the 2000s, when
several aeroelastic solvers based on full Euler or Reynolds-averaged
Navier–Stokes equations were developed by different groups and
showed their capability of solving the panel flutter problem at
transonic and low supersonic speed in linear [12,13] and nonlinear
[5,14–21] formulations.
Note that single mode flutter, which is caused by negative

aerodynamic damping dominating in this range of speeds, can be
significantly affected by the boundary layer over the panel surface
(unlike coupled-mode flutter at high supersonic speeds). Although
zero-gradient boundary layers reduce the flutter region in the
parameter space [15,16,18,19,22–25], boundary layers over concave
walls can be essentially destabilizing [26,27]. In this paper, the
boundary layer is neglected for simplicity, and only inviscid fluid–
structure interaction mechanism is studied.
In our preceding paper [5], we considered the development of

nonlinear panel flutter oscillations at constant subsonic, transonic, and
supersonic speeds. We showed that the panel oscillations experience
various bifurcations when changing the Mach number of the flow.
Besides well-known transitions from stability to static divergence at
M < 1 (pitchfork bifurcation) and from divergence to flutter atM ≈ 1
(Hopf bifurcation), we found bifurcations of limit-cycle oscillations
at M > 1. Namely, at small supersonic speeds, the limit-cycle
oscillations are symmetric and consist of the first mode only. At
M ≈ 1.12, the second mode can be excited, and a new limit cycle,
which includes internal 1:2 resonance between the first and the second
modes, appears (the existence of this limit cyclewas shown in a closed
form in [28,29]). Next, at M � 1.33, higher modes are excited, and
oscillations take the form of either regular or irregular higher-mode
oscillations. However, after passing the most destructive higher-mode
regime, atM � 1.5, the oscillations return to the first-mode limit cycle,
which dies out atM ≈ 1.67. ForM > 1.67, the plate stays stable, until
the coupled-mode flutter occurs at much higher speed.
In this paper, we reinvestigate this problem by modeling

continuously accelerating and decelerating air speed and have two
goals in mind. First, this approach allows better understanding of the
bifurcations of the limit cycle and shows their evolution in more
details. Second, a more practical goal is to investigate the panel
oscillations at transient regimes, especially at high accelerations, and
to explore the possibility of avoiding the most destructive limit-cycle
oscillations, or full suppression of flutter, if the transonic regime is
passed sufficiently fast.
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II. Formulation of the Problem and Method of Solution

We investigate the nonlinear evolution of small perturbations of a
clamped elastic plate (which represents a skin panel of a flight
vehicle) in accelerating or decelerating airflow. The air can flow
either over one side of the panel, as shown in Fig. 1a (this model
represents “classical” flutter problem), or over both sides (Fig. 1b),
but with half of the density of the one-side flow. The latter case
represents the symmetrical problem, which aims to understand the
source of nonsymmetry in the panel oscillations at some regimes;
primarily, we will consider the classical one-side flow.
The simulation domain is shown in Fig. 2. The size of the flow

domain is chosen so that the top and bottom boundaries are located
far enough from the plate to not affect the flow near the plate, and the
latter can be considered as interacting with the unbounded flow. The
air is modeled as inviscid perfect gas (i.e., the boundary layer over the
plate is neglected). To enforce this condition, we specify a free-slip
condition along the surface of the bent plate. Small artificial viscosity
of the flow is added to stabilize the numerical solution; it was checked
that the viscosity is small enough to not affect the flow.
Nonreflecting boundary conditions are specified over external

boundaries of the flow domain (i.e., inlet, outlet, top, and bottom
boundaries). Namely, depending onwhether the flow enters or leaves
the domain, one of the Riemann invariants is specified based on
far-field parameters of the flow. This boundary condition provides no
reflection of incident waves from top and bottom boundaries; to
ensure this, the convergence in the domain size was additionally
checked in a special series of runs. Far-field flow parameters are as
follows: constant pressure p � 100 kPa (one-side) or 50 kPa (two-
side flow) and constant temperature T � 273 K (the same for both
flow configurations).
Far-field flow velocity is a linear function of time, so that theMach

number is

M�t� � M1 � �M2 −M1��t∕T� (1)

for the accelerating flow and

M�t� � M2 − �M2 −M1��t∕T� (2)

for the decelerating flow. In all cases studied, we consider initial and
final Mach numbersM1 � 0.7 andM2 � 1.7. Various values of the
time period T, which characterizes the acceleration (deceleration) of
the flow, are considered.
Weconsider perfect gasmodel; hence, becausep � ρRT, two times

difference in pressure between two flow configurations yields two

times difference in density. If the flow perturbation is small, and Euler
equations are linearized, this would provide the same pressure
distribution over the plate for both flow configurations. However,
nonlinear flow response is different; when the plate bends, say,
upward, this yields shock waves over the top side of the plate and
expansion waves over the bottom side, which produce different
pressure distributions. That iswhy the difference between the two flow
configurations is the aerodynamicnonlinearity,whereas the linear flow
response and the structural linear andnonlinear responses are the same.
The plate is modeled by the nonlinear Mindlin plate model,

with the elastic strains calculated through Koiter–Sanders shell
theory. Its length is 0.3 m, the thickness is 0.001m, and steel material
properties are assigned: Young’s modulus E � 2 × 1011 Pa,
Poisson’s coefficient ν � 0.3, and density ρm � 7800 kg∕m3. Note
that, in dimensionless quantities, the combination of steel properties
and air properties at normal condition is the same as for an aluminum
plate in air at 11,000mabove sea level, so that results presented in this
paper are also concerned with this case.
The plate is continuously excited by applying a small perturbing

pressure along a small piece (of 0.005 m length) of the plate surface:
p � ε sin�2πΩt�, where ε � 1000 Pa, and Ω is the first natural
frequency of the plate. Continuous excitation (unlike short initial
disturbance [5]) is used to enforce each bifurcation immediately
when the system is ready to bifurcate.
The problem is solved in two codes, FlowVision (modeling of the

flow by the finite volumemethod) andAbaqus (modeling of the plate
through the finite element method), coupled in bothways through the
conventional serial staggered procedure. The flow mesh is shown in
Fig. 3; its size is 50 × 494 (one-side) and 50 × 772 (two-side flow).
The panel mesh consists of 60 finite elements. A detailed description
of the numerical procedure,mesh, and time step convergence study as
well as a validation of the solution can be found in our preceding
paper [5]; they are omitted here for the sake of brevity.
In spite of apparent simplicity, the flow-plate dynamics is rather

complex. An observation of the temporally changing plate shape
takes a long time and is hard to analyze. That is why we investigate
the plate motion by watching vertical deflection of a reference point
plotted versus time (time series) as well as spectrum, phase portrait,
and Poincaré map obtained from the time series of this point. The
reference point is located at 0.22mdownstreamof the leading edge of
the elastic plate, which is approximately 3∕4 of the plate length.

III. Results of Calculations for Accelerating Flow

We analyzed the plate-flow dynamics for accelerations
corresponding to T � 10, 7.5, 5, 2.5, 1, and 0.5 s, which represent

Lp

v

v

a) b)
Lp

v

p

Fig. 1 Representations of a) one-side, and b) two-side airflow over an elastic plate.

inlet plate

inlet

rigid plane

a) b)

inlet plate

rigid plane

Fig. 2 Simulation domain for the case of a) one-side, and b) two-side airflow.
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the acceleration range from very slow (T � 10 s) to extremely

fast (T � 0.5 s). Results of calculations are shown in Fig. 4 and

discussed later.

A. Slow Accelerations

At slow flow accelerations, T � 10, 7.5, and 5 s, the sequence of

bifurcations in the plate dynamics is the same as at constant speeds [5].

a) b)

Fig. 3 Computational grid for the case of a) one-side, and b) two-side airflow.

T=10 s

T= 2.5 s

T= 0.5 s

1.4 M1.0

-2

0

2

A×103 (m)4

1.61.20.8

1.4 M1.0

-2

0

2

A×103 (m)4

1.61.20.8

1.4 M1.0

-2

0

2

A×103 (m)4

1.61.20.8

a)

b)

c)
Fig. 4 Time series of the reference point deflectionA for accelerating flowwith a)T � 10 s, b) 2.5 s, and c) 0.5 s. Position of each bifurcation is shownby a
circle on the horizontal axis.
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A typical time history of the reference point deflection A is shown in
Fig. 4a forT � 10 s. The following changes in the plate dynamics are
seen when the flow speed is increasing.

1. Pitchfork Bifurcation atM ≈ 0.78

At this Mach number, the panel becomes unstable; it is diverged
from the flat state. Observations show that the static shape of the bent
plate coincideswith the first naturalmode shape.When increasingM,
the divergence amplitude increases, until the sonic speed is reached,
where Hopf bifurcation occurs.

2. Hopf Bifurcation at M � 1.0

Here, the first-mode limit cycle is born. Oscillations have a form of
a forward-traveling wave, as shown in Fig. 5. Several first cycles of
oscillations are far from harmonic; the plate motion is delayed in
upward bent positions. For M just slightly higher than 1.0, delays
rapidly disappear, and oscillations becomemore smooth (Fig. 6). It is
seen that, in the case of one-side flow, the deflection of the plate bent
upward and downward is nonsymmetric, whereas they are purely
symmetrical for the two-side flow. Because the nonsymmetry of the
one-side flow model is only in the aerodynamic nonlinearity, we
conclude that this nonlinearity is responsible for the nonsymmetry of
oscillations atM ≈ 1.0 in the case of one-side flow.

3. Collapse of Twists atM ≈ 1.06

When oscillations are just started atM � 1.0, they have a form of
pure forward-traveling wave. At higher M, twists of the oscillations
appear near the trailing edge, which is seen in Fig. 7 in the rear part of
the plate as well as in the time series for the reference point shown in
Fig. 8 (arrows show the directions of twistmotionswhenM increases).
With the increase of Mach number, positions of twists move to each
other and collapse at M ≈ 1.06. After the collapse, the oscillations
become smooth and look more like standing-wave oscillations, with
much less presence of the forward-traveling wave component (Fig. 7).
Phase portraits shown in Fig. 8 provide the most clear evidence of

this bifurcation. Before the bifurcation, the phase portrait has two
twists, which tend to each other when M is increasing. At the

bifurcation point, they collide and disappear, the and phase portrait

becomes smooth.
Note that, at this bifurcation, the spatial modal structure of

oscillations is not changed; the first natural mode is dominant.

4. Birth of the 1:2 Resonant Limit Cycle at 1.11 < M < 1.15

Vedeneev [28,29] considered a closed-form solution for limit-

cycle oscillations of the plate and showed that, although at small
supersonic speeds, only first-mode limit cycle is possible, for slightly

higherM, another limit cycle is born, which consists of the first and

the second modes being in internal 1:2 resonance. Later, Shishaeva

et al. [5] observed this resonant limit cycle in their numerical

simulation of nonlinear oscillations at constant flow speed. The

resonant limit cycle coexists with the first mode nonresonant limit

cycle, such that the choice of the limit cycle depends on the initial

perturbation. After the switch to the resonant limit cycle, the plate

oscillation shape (Fig. 9), time series, and the phase portrait (Fig. 10)

become nonsymmetric. For the two-side flow (Fig. 10), there is a

certain point M ≈ 1.14, which corresponds to the switch to

nonsymmetrical time series. The same occurs for the one-side flow;

however, because the oscillations are already slightly nonsymmet-

rical before this bifurcation due to nonsymmetric aerodynamic

nonlinearity, the transition to resonant limit cycle is smooth

(Fig. 10a), and no certain bifurcation point can be pointed out.
Note that, although before this bifurcation the traveling-wave

component of the oscillations was always forward-traveling, in the

resonant limit cycle, it is forward-traveling when the plate moves up

but backward-traveling when the plate moves down (Fig. 9). This

effect is the result of the presence of the second mode, which has two

times higher frequency.

5. Bifurcation of Resonant Limit-Cycle Oscillations atM ≈ 1.22

This bifurcation is very minor and was not noticed in the previous

constant-speed study [5]. When passing through this bifurcation

point, there is an evident increase of the noise level in the plate

dynamics but no visible change in the oscillation shape. However,

observation of the phase portrait in Fig. 11 (arrows show the

directions of twist motions when M increases) shows a clear
bifurcation of the phase trajectory at its left tip. Although the

trajectory was smooth before this bifurcation, it has two twists after

passing through the bifurcation point.When observing the time series

(Fig. 4) for small acceleration, the change in the oscillation is hardly

seen; however, it becomesmore pronouncedwhen the acceleration is

increased. Especially, for T � 0.5 s, there is a clear change in the

bottom portion of the time series; delays, which correspond to twists

of the phase trajectory, are seen in Fig. 4c.

M=1.01

Fig. 5 Plate shape along the oscillation cycle after the Hopf bifurcation.
Motion upward (black) and downward (gray).

-2

0

2

1.00 1.01 1.02 1.03M

-2

0

2

A
×

10
3  (

m
)

A
×

10
3  (

m
)

a)

b)

Fig. 6 Time series of the reference point deflection during Hopf bifurcation: a) one-side, and b) two-side flow.

M=1.05 M=1.07 

Fig. 7 Plate shape along the oscillation cycle before and after bifurcation 3. Motion upward (black) and downward (gray).
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M=1.09 M=1.15 

Fig. 9 Plate shape along the oscillation cycle before and after bifurcation 4. Motion upward (black) and downward (gray).

a)

b)

Fig. 8 Time series and the change of the phase portrait of the reference point deflection during bifurcation 3: a) one-side, and b) two-side flow.

a)

b)

Fig. 10 Time series and change of the phase portrait of the reference point deflection during bifurcation 4: a) one-side, and b) two-side flow.
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6. Transition from Resonant Limit Cycle to High-Frequency Nonperiodic

Oscillations atM ≈ 1.4

According to linear flutter boundaries [3], the first mode becomes
damped when Mach number exceedsM ≈ 1.4. Therefore, this mode
cannot provide energy inflow into the plate from the flow and cannot
anymore support the limit-cycle oscillations. However, highermodes
stay linearly growing; they convey the energy from the flow to the
plate, and their presence in the plate shape dramatically increases
(Figs. 12 and 13). On the other hand, there is no clearly dominating
mode; each one is growing and tends to establish its own limit cycle.
Because of concurrence between multiple growing modes, no limit
cycle corresponding to one certain mode is reached, and the process
becomes chaoticlike, with spontaneous changes of the plate shape
from the second to the sixth mode shapes. Note that, at constant-
speed analysis [5], there is a small gap of Mach numbers near
M ≈ 1.4, where higher-mode limit cycle is established (both
nonresonant fourth-mode limit cycle, and resonant second- and

fourth-mode limit cycle were observed); however, in accelerating

flow, this gap is passed very quickly, and the oscillations become

chaoticlike without any evidence of higher-mode limit cycles.

7. Transition to Stability atM ≈ 1.69

Starting from M ≈ 1.65, high-frequency oscillations rapidly

decay, and the plate is stabilized at M ≈ 1.69. No further

oscillations occur.

This sequence of bifurcation in the plate dynamics occurs at

transonic and low supersonic speeds, where single-mode flutter in

several modes is active. Note that all these bifurcations, including the

third and the fifth, are present in constant-speed analysis, but the latter

two were not noticed before [5].
After the plate stabilization, it stays flat whileM ≤ Mcr ≈ 2.92 [5].

At M > Mcr, the coupled-mode flutter occurs, which yields

nonlinear limit-cycle oscillations with the plate shape composed of

the first and the second natural mode shapes, and the plate stays

fluttering for arbitrarily higher M. Because limit-cycle oscillations

(LCOs) at coupled-mode flutter are well studied in the literature, we

do not analyze them in this paper.

B. Moderate Accelerations

For faster flow acceleration, T � 2.5, time series is shown in

Fig. 4b. It is clearly seen that the first five bifurcations are similar to

a)

b)

Fig. 11 Time series and change of the phase portrait of the reference point deflection during bifurcation 5: a) one-side, and b) two-side flow.

M=1.41

Fig. 12 Plate shapes during nonperiodic oscillations.
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those present at lower accelerations (Fig. 4a). However, transition to
high-frequency periodic or nonperiodic oscillations does not occur.
For M > 1.4, the amplitude of resonant limit cycle decreases. At
M � 1.58, resonant oscillations are converted into nonresonant first-
mode limit cycle. The amplitude continues decreasing, and the
oscillations die out at M ≈ 1.69.
The reason of the absence of high-frequency oscillations for these

accelerations is their long formation period. As was noted by
Shishaeva et al. [5] in their constant-speed study, high-frequency
oscillations need much more time to develop than first-mode
nonresonant or resonant limit cycles due to lower growth rates of
higher modes. When the time period T decreases (i.e., flow
acceleration increases), the range of Mach numbers where high-
frequency oscillations occur becomes shorter and disappears at
2.5 < T < 5 s. For faster flow acceleration, Mach number leaves the
region of high-frequency oscillations before they actually manifest
themselves. That is why only first-mode and resonant limit cycles are
observed.

Fig. 13 Time series and the change of the phase portrait of the reference point deflection during bifurcation 6.

M=1.6M=1.56M=1.45

M=1.27M=1.1

T=10 s

1.4 M1.0

-2

0

2

A×103 (m)4

1.61.20.8

a)

b)

Fig. 15 Representations of a) position of point 1 at extrema of point 2 for accelerating flow, T � 10 s, and b) corresponding Poincaré maps at various
Mach numbers.

0

100

200

600

300

500

400

(Hz)

M

10
2.5
1.0

T (s)Ω

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
Fig. 14 Dominant frequencies in the oscillation spectrum vs M for
accelerating flow. Symbols denote results for constant-speed flow [5]:
divergence (♦), first-mode limit cycle (▪), 1:2 resonant limit cycle (▴),
high-frequency limit cycle (�), and nonperiodic oscillations (•).
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C. Fast Accelerations

The time series for more significant accelerations, T � 1 and 0.5 s
(Fig. 4c), in general, follows the sequence of bifurcations similar to
shown in Fig. 4b. It can only be noted that the oscillations do not
convert from resonant to nonresonant at M ≈ 1.58, at least in the
range of analyzed Mach numbers. They also do not die out at
M ≈ 1.69; despite no energy inflow from the air, the oscillations are
continued as free and disappear at higherM.
Note that, for such high accelerations, the oscillations start not at

M � 1 but at M ≈ 1.11, immediately in the form of resonant
oscillations. This is caused by a small overpressurization above the
plate due to continuous increase of the flow speed. In result,
oscillations start slightly later than for largerT. For the two-side flow,
overpressurization above and below the plate compensate each other,
and calculations show that the oscillations start atM � 1 even for the
highest acceleration considered.

D. Oscillation Frequency

Figure 14 shows dominant frequencies in the oscillation spectrum
versus Mach number. It is seen that, at 1 < M < 1.13, when the limit

cycle is nonresonant, only two frequencies being in 1:3 ratio are

present in the spectrum. The first frequency corresponds to the first-
mode oscillations, and the tripled frequency is an artifact of the cubic

nonlinearity of the plate model (i.e., it does not correspond to its

proper eigenmode). At the birth of the resonant limit cycle, a doubled
frequency appears. It corresponds to the second-mode oscillations

present in the plate shape as shown in Fig. 9. At M ≈ 1.4, when
nonperiodic oscillations occur for T � 10 s, the spectrum shows the

dominance of higher-mode frequencies, which are not in any

simple ratio.
Faster accelerations show the absence of higher frequencies at

M > 1.4 so that no significant change of the spectrum occurs during

the oscillation history.

E. Poincaré Maps

A Poincaré map, which is a projection of infinite-dimension

dynamics to a low-dimension phase space, is an effective tool for a
detailed analysis of nonperiodic oscillations [30]. We will use a map

definition similar to [30]; we will analyze a phase plane of the
reference point, which will refer to as “point 1” when another point

T=10 s 

T= 2.5 s 

T= 1.0 s

a)

b)

c)

1.4 M 1.0 

-2 

0 

2 

A×103 (m) 4 

1.61.2 0.8 

1.4 M 1.0

-2 

0 

2 

A×103 (m) 4 

1.61.2 0.8 

1.4 M 1.0 

-2 

0 

2 

A×103 (m) 4 

1.6 1.2 0.8 

Fig. 16 Time series of the reference point deflectionA for decelerating flowwith a)T � 10 s, b) 2.5 s, and c) 1.0 s. Position of each bifurcation is shownby
a circle on the horizontal axis.
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that we will refer to as “point 2” reaches maximum or minimum
deflection. In other words, point 2 is used to discretize time and point
1 to analyze the plate dynamics. Point 2 is located at 0.08 m
downstream of the leading edge of the plate, which is approximately
1∕4 of the plate length. Figure 15a shows deflection of point 1 when
deflection of point 2 reaches its extremum.Most of the bifurcations of
the plate dynamics are clearly seen in this plot; namely, besides the
first two obvious bifurcations, the third bifurcation is accompanied
by the transition from three- to two-valued function, and the fourth
bifurcation, at the end of the transition to resonant oscillation, is
distinguished by the transition from two- to four-valued function.
Poincaré maps representing different types of LCOs are shown in

Fig. 15b. Although forM � 1.1 andM � 1.27, corresponding to the
first mode and resonant oscillations, respectively, the map consists of
two and four points (slight motion of the points from cycle to cycle
occurs due to the flow unsteadiness), for M � 1.45, 1.56, and 1.6,
corresponding to nonperiodic oscillations, there is a cloud of points.
It can be noted, however, that forM � 1.45 and 1.6, this cloud is not
fully chaotic but is concentrated around two rings, which can signify
only a small quasi-chaotic component imposed on a dominant regular
motion. For M � 1.56, the cloud of points is not regular, which
signifies a more pronounced quasi-chaotic component of the motion.

IV. Results of Calculations for Decelerating Flow

A. Slow Deceleration

The slowest flow deceleration considered in this study
corresponds to T � 10 s. The plate behavior in this case is
significantly different from faster decelerations, that is why it is
considered separately. The time history of the reference point
deflection is shown in Fig. 16a.
The following changes in the plate dynamics are observed.
1) When M is decreasing, the vibrations start at M � 1.45 and

correspond to the first mode shape. The oscillations spectrum also
shows that the first mode only is present.
2) Transition from first-mode to high-frequency nonperiodic

oscillations at M ≈ 1.39. Evolution of the time series and phase
portrait is shown in Figs. 17a and 17b, where nonrepeatability of the
oscillations from cycle to cycle is clearly seen.
3) Transition from nonperiodic oscillations to the second-mode

limit-cycle oscillations at M ≈ 1.26. The plate oscillates in a pure

second-mode shape (Fig. 18); the corresponding frequency becomes
dominant in the spectrum (Sec. IV.D). The phase portrait shown in
Fig. 19 corresponds to purely sinusoidal oscillations.
4) Transition frompure secondmode to resonant limit cycle occurs at

M ≈ 1.17. The spectrum consists of the first, second, and third modes
(Sec. IV.D), exactly as in the case of accelerating and constant-speed
flows. The transformation of the phase portrait is shown in Fig. 20.
Oscillations loose the symmetry due to the presence of the second
mode, whose frequency is two times larger than that of the first mode.
5) Transition from resonant to the first mode limit cycle occurs at

M ≈ 1.09 (Fig. 21), andoscillations againbecomealmost symmetrical.
6) Transition from “smooth” first-mode flutter to first-mode flutter

with twists takes place at M � 1.06 (Fig. 22, arrows show the
directions of twist motions when M increases).
7) Transition from flutter to divergence at M � 1. Note that the

plate shape is reversed at M ≈ 0.83, which is caused by a slight
depressurization over the plate due to continuous slowing downof the
flow. That is why the plate buckling direction is changed near the
bifurcation point. However, this does not signify any additional
bifurcation.
8) The plate become stable atM ≈ 0.78.

B. Moderate Decelerations

Moderate flow decelerations correspond to T � 7.5, 5, and 2.5 s,
which demonstrate similar plate dynamics. Themain difference from

the case of T � 10 s is the absence of pure second-mode limit cycle.

Otherwise, the sequence of the bifurcations in the plate dynamics is

the same as for T � 10 s.
A typical time history of the reference point deflection is shown in

Fig. 16b.Aswell as forT � 10 s, oscillations in the first mode start to

grow at M � 1.45, followed by the transition to high-frequency

nonperiodic oscillations. The latter is followed by the bifurcation to

a)

b)

Fig. 17 Reference point deflection and phase trajectories a) for transition from the first mode to nonperiodic oscillations, and b) for evolution of
nonperiodic oscillations.

M=1.25

Fig. 18 Plate shapes during second-mode oscillations.

SHISHAEVA ETAL. 1005

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

E
 D

E
 S

H
E

R
B

R
O

O
K

E
 o

n 
M

ar
ch

 9
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

62
17

 



Fig. 21 Reference point deflection vs Mach number and phase diagrams for transition from resonant flutter to first-mode flutter.

Fig. 22 Reference point deflection vs Mach number and phase diagrams for transition from smooth first-mode LCOs to LCOs with twists.

Fig. 20 Reference point deflection vsMach number and phase diagrams for transition from pure second-mode LCOs to resonant flutter in the first and
second modes.

Fig. 19 Reference point deflection and phase trajectories for transition from nonperiodic oscillations to single second-mode LCOs.
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resonant limit-cycle oscillations and then to the first-mode limit cycle

atM ≈ 1.09. After the appearance of twists, visible as the bifurcation
in the first-mode cycle at M ≈ 1.06, the plate becomes statically

diverged at M ≈ 1.0 and stabilized atM ≈ 0.78.
The range of Mach numbers Mch1 < M < Mch2, where high-

frequency oscillations occur, becomes shorter for faster deceler-

ations. The upper boundaryMch2 drops from1.39 atT � 10 s to 1.28
at T � 2.5 s, whereas the lower boundaryMch1 increases from 1.17

to 1.28. At T � 2.5 s, both boundaries merge with each other, such

that high-frequency oscillations are almost not visible (Fig. 16b). The

explanation is similar to the same phenomenon for the accelerating

flow (Sec. III.B); development of higher modes needs more time,

which becomes comparable with the time passed in the region of

nonperiodic oscillations. If the deceleration is sufficiently fast,

nonperiodic oscillations do not have time to develop.

C. Fast Decelerations

Fast flow decelerations correspond to T � 1 and 0.5 s (Fig. 16c).

Its main feature is the absence of nonperiodic oscillations, so that the

first mode flutter is directly followed by resonant limit-cycle

oscillations at M � 1.18. Also, for lower M, at such a high

deceleration, the panel makes just a few oscillations in the first-mode

regime, and its bifurcation associated with the disappearance of

twists is almost not visible.

D. Oscillation Frequency

Dominant frequencies in oscillation spectrum in decelerating flow
are shown in Fig. 23. As well as for accelerating flow, at the range of
nonperiodic oscillations, the spectrum is very different for different
decelerations due to nonuniqueness of the oscillation regime.
However, for M < 1.2, when resonant and nonresonant first-mode
oscillations occur, the frequencies for different decelerations are
close to each other and to those for constant-speed flow.

E. Poincaré Maps

Finally, consider point 1 deflections when the point 2 deflection
reaches its extremum, shown in Fig. 24a (similar to Sec. III.E). Each
bifurcation in the plate dynamics is clearly seen, as well as the region
of nonperiodic oscillations. The most interesting Poincaré maps
(Fig. 24b) represent the second-mode limit cycle (absent in
accelerating flow) and nonperiodic oscillations. By comparing the
maps with Fig. 15b, we conclude that, in decelerating flow,
nonperiodic oscillations have more pronounced quasi-chaotic
motion component. In particular, no regular structures (like the two-
ring structure in Fig. 15b for M � 1.45 and 1.6) are seen.

V. Comparison of the Panel Response in Accelerating,
Decelerating, and Constant-Speed Flows

A. Hysteresis Loops at Acceleration and Deceleration

According to the results presented in previous sections, in the
region of divergence (M < 1), first-mode, and resonant first- and
second-mode LCOs (smallM > 1), the plate dynamics is the same
for different accelerations and decelerations. However, at higher
Mach numbers, the plate behavior for each case is significantly
different. That takes place even for small acceleration and
deceleration that correspond to T � 10 s (Fig. 25), for which the
amplitudes and frequencies are almost the same at M < 1.17,
where the instability occurs in the form of divergence as well as
first-mode and resonant LCOs but become different at
1.17 < M < 1.7, where higher-mode oscillations occur. This can
be seen in the amplitude as well as the frequency plot (Fig. 25),
where a hysteresis loop is observed. Frequencies in nonperiodic
high-frequency regime for accelerating flow are close to those in
constant-speed flow, but this regime is established at higher M
due to time needed for the growth of high-frequency perturbations.
A similar hysteresis loop is seen at higher accelerations, for

example, for T � 2.5 (Fig. 26). In all cases, the hysteresis loops
appear in the region of nonperiodic high-frequency oscillations

M=1.22 M=1.3 M=1.34

T=10 s

a)

b)

1.4 M1.0

-2

0

2

A×103 (m)4

1.61.20.8

Fig. 24 Representations of a) position of point 1 at extrema of point 2 for decelerating flow, T � 10 s, and b) corresponding Poincaré maps at various
Mach numbers.
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10
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Fig. 23 Dominant frequencies in the oscillation spectrum vs M for
decelerating flow. Symbols denote results for constant-speed flow (same
as in Fig. 14).
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(acceleration and constant speed) and first-mode oscillations

(deceleration), whereas the oscillation regimes coincide at resonant

and nonresonant LCOs at lowerM.
At higher accelerations, T � 1 s (Fig. 27), there is no high-

frequency nonperiodic oscillations; accordingly, the hysteresis loop

occupies the region of the first-mode flutter and stability at highMach

numbers (1.16 < M < 1.7). For M < 1.16, amplitude plots are close

to each other.

B. Comparison of Different Accelerations

Comparison of amplitudes of the typical cases of accelerations
(T � 10, 2.5, and 1 s) is shown in Fig. 28. It is seen that, forM < 1.4,
the amplitudes in all cases are close to each other and to the amplitude
obtained in constant-speed flow. The difference in the amplitude
appears when the oscillation type is changed from resonant LCOs to
higher-modeoscillations, which occurs atMach number that depends
on the acceleration.

M
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Fig. 27 Representations of a) amplitude and b) frequency of reference point oscillation vs Mach number for acceleration (black) and deceleration (red)
for T � 1 s. Symbols denote results for constant-speed flow (same as in Fig. 14).
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Fig. 25 Representations of a) amplitude and b) frequency of reference point oscillation vs Mach number for acceleration (black) and deceleration (red)
for T � 10 s. Symbols denote results for constant-speed flow (same as in Fig. 14).
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Fig. 26 Representations of a) amplitude and b) frequency of reference point oscillation vs Mach number for acceleration (black) and deceleration (red)
for T � 2.5 s. Symbols denote results for constant-speed flow (same as in Fig. 14).
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C. Comparison of Different Decelerations

Comparison of typical decelerations (T � 10, 2.5, 1 s) is shown in
Fig. 29. Aswell as for accelerations, we conclude that the oscillations
are the same in the region of divergence, first-mode and resonant
LCOs at lower M. The difference appears at higher M, where the
onset of oscillations is delayed for higher decelerations due to time
needed for their development. It can also be noted that the initial
growth of the first-mode oscillations in decelerating flow starts at
M ≈ 1.45 for all values of deceleration.

VI. Conclusions

From the structural safety point of view, the most dangerous type
of nonlinear dynamics of skin panels is high-frequency oscillations.
First, they correspond to much higher dynamic stress due to presence
of higher mode shapes; second, they yield much faster accumulation
of cycles due to higher frequency of oscillations. In this study, it has
been shown that this type of oscillation is fully suppressed if the flow
acceleration (or deceleration) is sufficiently large. For the parameters
considered in this study (steel plate at sea level or aluminum plate at
11,000 m above sea level), the suppression occurs for T < 2.5 s,
which corresponds to the acceleration of 13g. The mechanism of the
suppression is as follows: because higher-mode oscillations have
very long period of formation, the flow acceleration (deceleration)
becomes large enough to pass the region of high-frequency
oscillations (1.4 < M < 1.5) faster than they grow and, hence, faster
than the nonlinear oscillations in higher modes are actually formed.
On the other hand, low-frequency types of oscillations, namely,

pure first-mode limit-cycle oscillations and limit cycle with
internal 1:2 resonance, are not sensitive to the flow acceleration
(deceleration); even for extremely large accelerations (T � 0.5 s
corresponds to 67g), the amplitude reaches the same values as in
constant-speed flow. This occurs because, unlike high-frequency
oscillations, the formation of limit cycle for first-mode and resonant

oscillations occurs during 3–5 cycles of oscillations, and the panel
responds to the change of the flow condition very fast. Hence, for
these oscillation regimes, the only effect of faster passing through the
transonic region is a lower number of cycles collected in the single-
mode flutter regime but not full suppression of flutter or at least a
decrease in amplitude.
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