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Influence of the viscous boundary layer
perturbations on single-mode panel flutter

at finite Reynolds numbers
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Panel flutter is an aeroelastic instability of aircraft skin panels, which can lead to a
reduction in service life and panel destruction. Despite the existence of many studies
related to panel flutter, the influence of the boundary layer on the panel stability has
been considered in only a few of them. Up to the present day, most papers on the
boundary layer effect consider only a zero-pressure-gradient boundary layer over a flat
plate. The only studies of a boundary layer of arbitrary form were conducted in our
previous papers (Vedeneev, J. Fluid Mech., vol. 736, 2013, pp. 216–249 and Bondarev
& Vedeneev, J. Fluid Mech., vol. 802, 2016, pp. 528–552), where the boundary layer
was represented as an inviscid shear layer (the Reynolds number R = ∞). In this
paper we investigate the problem, taking viscosity into account, at large but finite
Reynolds numbers. As before, we assume that the panel length is large and use
Kulikovskii’s global instability criterion to analyse the panel eigenmodes and consider
two different types of boundary layer profiles: a generalised convex profile and a
profile with a generalised inflection point. Results show that viscous perturbations can,
in general, have both stabilising and destabilising effects on the system, depending
on the velocity and temperature profiles of the boundary layer and on its thickness.
However, surprisingly, we prove that if the boundary layer yields a significant growth
rate in the inviscid approximation, then the viscosity always produces an even larger
growth rate.

Key words: boundary layers, boundary layer stability, flow–structure interactions

1. Introduction

Flutter of skin panels is a dangerous phenomenon that can occur in rockets,
airplanes and other flight vehicles moving at supersonic speed. These vibrations
usually have a high amplitude, cause fatigue damage and decrease skin panel’s
lifetime.

First investigations of panel flutter were conducted during WWII, but significant
results were obtained in the 1950s–1970s, which are summarised by Bolotin (1963),
Dowell (1974) and Novichkov (1978).

† Email address for correspondence: vasily@vedeneev.ru

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

om
on

os
ov

 M
os

co
w

 S
ta

te
 U

ni
ve

rs
ity

, o
n 

17
 A

ug
 2

01
8 

at
 1

2:
13

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

http://orcid.org/0000-0002-1645-2904
http://orcid.org/0000-0002-1787-5829
mailto:vasily@vedeneev.ru
https://doi.org/10.1017/jfm.2018.527
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Influence of the viscous boundary layer perturbations on panel flutter 579

L

M
x

y

z

FIGURE 1. Gas flow over an elastic plate.

In most of the panel flutter studies a uniform air flow over a plate was considered,
and the boundary layer was neglected. Only a few investigations were devoted to
the theoretical (Miles 1959; Dowell 1971, 1973; Hashimoto et al. 2009; Visbal
2014; Alder 2015, 2016) and experimental (Muhlstein, Gaspers & Riddle 1968;
Gaspers, Muhlstein & Petroff 1970) studies of the effect of boundary layer over
the plate surface. It is shown that, in the presence of a boundary layer, the flutter
can be weakened or completely suppressed. This result was obtained by analysing a
particular profile of the boundary layer, which corresponds to a zero-pressure-gradient
turbulent boundary layer over a flat plate. However, depending on the flow conditions,
qualitatively different boundary layer profiles can be formed over different parts of a
flight vehicle.

Vedeneev (2013) analytically investigated the influence of an arbitrary boundary
layer on the panel flutter in an inviscid shear layer approximation; only long-wave
modes were considered. It turned out that its influence on the coupled-mode flutter
does not depend on the profile of the boundary layer, whereas for the single-mode
flutter its effect is different for generalised convex profiles and profiles with a
generalised inflection point. By using numerical calculations, Bondarev & Vedeneev
(2016) generalised those results to arbitrary wavelengths.

The first step towards the inclusion of the effect of viscosity into the boundary layer
model was done by Bondarev & Vedeneev (2017), who considered viscous boundary
layer perturbations at large but finite Reynolds numbers for the case of an infinite
plate. It was shown that the effect of the finiteness of the Reynolds number in this
case can have both a destabilising and a stabilising effect, depending on the phase
speed of the travelling wave. The influence of viscous boundary layer perturbations
on panel flutter in the case of finite plates still remains an open question, which is
analysed in this study.

The paper is organised as follows. In § 2, we formulate the problem, discuss
assumptions and describe the method of solution. Next, in § 3 we derive the pressure
perturbation acting on the plate at large but finite Reynolds numbers by using
asymptotic Wentzel–Kramers–Brillouin-type solutions. In § 4 we use this expression
to close the coupled aeroelastic problem and find the location of its eigenfrequencies
on the complex plane by using Kulikovskii’s global instability criterion, and analyse
the effect of finite Reynolds numbers. Finally, in § 5 we discuss the results obtained
and their possible applications.

2. Formulation of the problem and results of the inviscid analysis
2.1. Formulation of the problem

We consider an elastic plate in a supersonic boundary layer flow of a viscous gas and
investigate the influence of the layer on the plate stability (figure 1). It is assumed
that the plate represents a skin panel of a flight vehicle, and the local velocity and
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temperature distributions in the boundary layer are known from the analysis of the
steady flow around the vehicle.

The problem is investigated in a two-dimensional (2-D) formulation (all variables
do not depend on y); also, we neglect the evolution of the boundary layer along the
panel length so that the unperturbed flow does not depend on x. This assumption
is valid if the plate length L is small enough in comparison with the distance at
which the boundary layer is essentially changed. All variables are assumed to be
non-dimensional, with the speed of sound a∞ and temperature of the flow T∞ taken as
the velocity and temperature scales (the subscript ‘∞’ denotes dimensional parameters
of the flow outside the boundary layer), the plate thickness h as the length scale
and plate material density as the density scale. The Reynolds number is defined as
R= u∞δ̃/ν∞, where u∞ and ν∞ are the flow speed and the kinematic viscosity, δ̃ is
the dimensional thickness of the boundary layer.

The motion of the plate is described by the Kirchhoff–Love small deflection plate
theory. In a dimensionless form, the plate equation is as follows:

D
∂4w
∂x4
−M2

w
∂2w
∂x2
+
∂2w
∂t2
+ p(x, 0, t)= 0, (2.1)

where w(x, t) is the plate deflection, D is its stiffness, Mw is the square root of the
dimensionless in-plane tension force and p(x, z, t) is the flow pressure disturbance
induced by the plate motion, such that p is a function of w.

Two boundary conditions must be specified at each plate edge. For example, these
could be clamping, pinning or free-edge boundary conditions.

To simplify the study we assume that the boundary layer, with given undisturbed
velocity and temperature profiles, is laminar up to high Reynolds numbers. This
assumption can be justified by the fact that laminar boundary layers are observed in
experiments up to R ∼ 105 for the Reynolds number based on the boundary layer
thickness (Gaponov & Maslov 1980). For turbulent boundary layers this simplification
can be used as the first approximation if the dominant turbulent fluctuation frequencies
are much higher than the frequency of the growing plate oscillations.

The perturbations of a perfect viscous gas with a boundary layer-type mean flow are
described by the linearised Navier–Stokes equations (Lees & Lin 1946). The boundary
conditions for the perturbations are as follows:

(i) the no-slip and adiabatic conditions along the moving plate surface;
(ii) radiation condition as z→∞.

Note that the adiabaticity of perturbations does not imply heat insulation for the
mean flow.

Hence, the plate and the gas motions are coupled in both ways: first, the plate
moves under the action of the flow pressure (2.1); second, the flow is perturbed by
the plate through the no-slip boundary condition, i.e. the normal (vertical) flow speed
should be equal to the plate speed, and the tangential (horizontal) flow speed should
be zero.

We will assume than the plate length is large in terms of the Kulikovskii (1966)
instability condition. He proved that the stability criterion for systems of large finite
length is generally different from the criterion for an infinite system, but the analysis
of a finite length system can be reduced to the study of infinite system waves.
Vedeneev (2012, 2016) showed that for the 2-D panel flutter problem, the Kulikovskii
criterion yields reliable predictions of the flutter boundary for the panel parameters
actually used in aviation. Before proceeding to the study of the problem, let us briefly
describe the Kulikovskii global instability criterion.
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Influence of the viscous boundary layer perturbations on panel flutter 581

2.2. The global instability criterion
Kulikovskii (1966) proved that there are two instability types of a system of
large but finite length: the ‘one-side’ and ‘global’ instabilities. Accordingly, the
growing perturbations can have the form of either one-side eigenfunctions, which are
determined by the reflection of waves from one boundary, or global eigenfunctions,
representing two waves travelling in opposite directions, turning into each other when
reflected from the boundaries of the system.

The typical boundary conditions for the plate (clamped, pinned or free edge) do not
satisfy the condition of the one-side instability of 2-D perturbations (Vedeneev 2005).
Thus, the flutter can occur only in the form of the global instability.

To describe the global instability criterion, let us number the spatial roots kj(ω) of
the dispersion equation for an infinite system in the order of decrease of Im kj(ω) as
Imω→+∞:

Im k1 > · · ·> Im ks > 0> Im ks+1 > · · ·> Im kN, (2.2)

where ω is a complex frequency. Next, we split the roots into two groups: the first
is such that Im kj(ω) > 0, j= 1, . . . , s; the second is such that Im kj(ω) < 0, j= s+
1, . . . ,N as Imω→+∞. The first and second groups represent the waves travelling
in the positive and negative x directions, respectively.

According to global instability criterion, as the length of the system L→∞, its
eigenfrequencies tend to the curve Ω in the ω-plane defined by the following equation:

min
16p6s

Im kp(ω)= max
s+16q6N

Im kq(ω). (2.3)

Thus, the instability criterion of long finite systems is as follows: the system is
unstable if a piece of the Ω curve is located in the Imω> 0 half-plane.

For an infinite plate in a gas flow, by considering the travelling-wave solution
w(x, t) = ei(kx−ωt), p(x, z, t) = π(z)ei(kx−ωt), the dispersion equation D(k, ω) = 0 is
readily obtained from (2.1):

D(k, ω)=Dk4
+M2

wk2
−ω2

+π(0)= 0. (2.4)

Spatial roots k1 and k2 correspond to the waves travelling downstream, and k3 and k4
correspond to the waves travelling upstream (Vedeneev 2013), where Im k1 > Im k2 >

0> Im k3> Im k4 as Imω→+∞. According to the Kulikovskii criterion, as the length
of the plate L→∞, its eigenfrequencies in a gas flow tend to the curve Ω in the
ω-plane defined by the following equation:

Im k2(ω)= Im k3(ω), (2.5)

which corresponds to the single-mode flutter of the plate (Vedeneev 2005, 2012, 2013).
Eigenfrequencies corresponding to the other type of panel flutter, coupled-mode flutter,
tend to the curve

Im k2(ω)= Im k4(ω), (2.6)

but they are not considered in this study, because the boundary layer effect on this
flutter type is minor (Vedeneev 2013).

Let us now briefly review the results of our previous studies devoted to the inviscid-
flow problem.
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582 V. Bondarev and V. Vedeneev

2.3. Inviscid approximation
Vedeneev (2013) and Bondarev & Vedeneev (2016) studied the problem under
consideration for the Reynolds number R = ∞, i.e. in the inviscid approximation.
Comparison of the asymptotic results obtained through the Kulikovskii criterion for
plates in uniform flow with solutions of the full eigenvalue problem (Vedeneev 2012,
2016) shows that the results are reliable for dimensionless plate lengths (i.e. plate
length rated to the plate thickness) L & 100. It is expected that results obtained for
the boundary layer flow are valid for the same plate lengths.

Let us call the boundary layer profile with

d
dz

(
1
T

du
dz

)
< 0 (2.7)

for z ∈ [0; δ) the generalised convex profile (Lees & Lin 1946), where u, T are
the velocity and temperature profiles of the undisturbed flow, δ is the thickness
of the boundary layer. Accelerating supersonic flows, which usually occur along
convex walls, are examples of generalised convex boundary layer profiles. For this
type of boundary layer it has been proven that an increase of the layer thickness
yields an increase of the frequencies of growing eigenmodes and a decrease of their
growth rates. For sufficiently thick boundary layers the plate is fully stabilised.
These conclusions are in agreement with the stabilisation of the plate by the
zero-pressure-gradient boundary layer observed in the experimental and theoretical
studies of Muhlstein et al. (1968), Gaspers et al. (1970), Dowell (1973), Hashimoto
et al. (2009) and Alder (2015, 2016).

The case of the boundary layer profile with a generalised inflection point zi, where
(u′/T)′ = 0, was also considered (the prime denotes differentiation with respect to
z). In subsonic flow, such a profile would be unstable, because the existence of the
generalised inflection point is a necessary and sufficient condition for the inviscid
instability of subsonic disturbances (Lees & Lin 1946). However, in supersonic flow,
there exist such profiles (for example, in flows over certain concave walls) such that
the generalised inflection point is located in the supersonic (with respect to the mean
flow) part of the boundary layer, i.e. u(zi) <M − 1, where M = u∞/a∞ is the Mach
number. Vedeneev (2013) showed that such a profile can be stable and therefore can
exist in real flows. We proved that, for this type of boundary layer, the thickening of
the layer first yields the increase of the growth rates accompanied by the widening
of the frequency range of growing eigenmodes. For higher thicknesses, growth rates
decrease and tend towards 0 as δ→∞; however, they stay positive. As a result the
boundary layer can have an essentially destabilising effect.

In this study we will investigate the effect of viscosity on single-mode flutter.
However, prior to considering the coupled aeroelastic problem, in the next section we
will study perturbations of the boundary layer induced by the wall motion.

3. Viscous perturbations of the boundary layer
Hereafter, the Reynolds number is assumed to be large but finite.

3.1. System of equations for perturbations
Let us consider linearised dimensionless travelling-wave perturbations of the flow
(Lees & Lin 1946) expressed by the following functions:

z1 = f ; z2 = f ′; z3 = ϕ; z4 =
π

M2
; z5 = θ; z6 = θ

′. (3.1a−f )
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Influence of the viscous boundary layer perturbations on panel flutter 583

Here, f , θ are the non-dimensional perturbation amplitudes of the horizontal velocity
component (x-component) and temperature. Lees & Lin (1946) used different scales
in the non-dimensionalisation, which we will retain in this section. Namely, the
velocity and the temperature outside of the boundary layer are chosen as velocity
and temperature scales, respectively. The thickness of the boundary layer is taken as
the length scale. The function ϕ characterises the non-dimensional perturbation of the
vertical component of velocity, which is related as vz = kϕ(z)ei(kx−ωt). The function π

is the non-dimensional pressure perturbation, with ρ∞u2
∞
/(γM2) taken as the pressure

scale, where γ is the adiabatic index.
According to the boundary layer theory, we will assume a steady pressure P(z)=

const. Also, the perturbation of the dynamic viscosity is related to the temperature
perturbation as follows: m= θ(dµdyn/dT), where µdyn is the non-dimensional dynamic
viscosity, with its value in the mean flow taken as the characteristic scale. Below,
for simplicity, it is assumed that the dynamic viscosity is constant and m= 0 (much
longer algebra shows that without this simplification the results are the same as those
presented below). Then the linearised dimensionless system of equations for gas
perturbations takes the form (Lees & Lin 1946)

z′1 = z2,

z′2 =
kR
νρ

(
ρ(i(u− c)z1 + u′z3)+

i
γ

z4

)
+O(1),

z′3 =−iz1 −
ρ ′

ρ
z3 − i(u− c)

(
z4M2

p
−

z5

T

)
,

z′4 =
(

1+
1
R

O(1)
)−1

×

(
−γ k2ρi(u− c)z3 +

1
R

O(1)
)
,

z′5 = z6,

z′6 =
kRPr
γ νρ

(
γρ(T ′z3 + i(u− c)z5)− i(γ − 1)(u− c)z4M2

)
− 2Pr(γ − 1)M2u′(z2 + ik2z3)+ k2z5,



(3.2)

where c = ω/k is a phase speed; ρ and ν are the non-dimensional density and
kinematic viscosity of the undisturbed flow, with ρ∞ and ν∞ taken as characteristic
scales, respectively; Pr is the Prandtl number, and O(1) are functions of zj, which
have the order of unity as R→∞.

The general solution of the system (3.2) consists of a combination of six linearly
independent solutions. In the case of R→∞ these solutions can be approximated
by two regular solutions, transforming into the solutions of the Rayleigh equation as
R→∞, and four solutions of WKB (Wentzel–Kramers–Brillouin) type, having the
asymptotic form zi(z)= fi(z) exp(g0(z)

√
kR) (Lees & Lin 1946).

3.2. Regular solutions
In the case of inviscid approximation (R = ∞) we can derive from (3.2) an
ordinary second-order differential equation for the vertical component of the velocity
perturbation, known as the compressible Rayleigh equation (Lees & Lin 1946):

d
dz

(
(u− c)ϕ′ − u′ϕ
T −M2(u− c)2

)
−

k2

T
(u− c)ϕ = 0. (3.3)
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FIGURE 2. Integration path chosen for solving the Rayleigh equation for the velocity
profile u(η)=M sin(πη/2), M= 1.6, c= 0.5− 0.33i. The critical point is zc≈ 0.20− 0.14i,
δ = 1.

The pressure perturbation is expressed in terms of the perturbation of the vertical
velocity component as

π=−iγM2

(
(u− c)ϕ′ − u′ϕ
T −M2(u− c)2

)
. (3.4)

The Rayleigh equation can have two singularities (Lees & Lin 1946). The first one
is the point z, where T(z)−M2(u(z)− c)2= 0; this singularity is removable. The other
one is the critical point zc, where u(zc)= c; it leads to the logarithmic singularity of
the solution.

In order to obtain a solution that is a limit of the viscous solution as R→∞ the
critical point must be passed below in the complex z-plane (Drazin & Reid 2004; Lees
& Lin 1946) (figure 2). Consequently, to solve the Rayleigh equation, the integration
from z=0 to z=1 must be carried out along a smooth curve passing below the critical
point. In particular, in the case of growing perturbations, Im(zc) > 0, the integration
can be carried out along the real axis z in the complex z-plane, but this is not the
case for neutral and damped perturbations, Im(zc)6 0.

Consider boundary conditions for the Rayleigh equation. First, at the plate surface
z = 0, we assign the condition of impenetrability along the oscillating plate. The
second condition is placed on the boundary layer edge z = 1. Since the flow is
homogeneous for z > 1, the Rayleigh equation (3.3) reduces to an equation with
constant coefficients and has the solution v(z) = Ce−βz, β = k

√
1−M2(1− c)2. The

radiation condition as z → +∞ yields a particular square root branch, namely,
Reβ > 0 as Imω→+∞. This exponentially decaying solution outside the boundary
layer must be matched with the solution inside the boundary layer, which yields the
second boundary condition. Thus, the boundary conditions take the following form:

ϕ =−ic (z= 0),
dϕ
dz
+ βϕ = 0 (z= 1). (3.5a,b)
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Influence of the viscous boundary layer perturbations on panel flutter 585

3.3. WKB solutions
These solutions can be represented by the following expansions in series of the small
parameter ε= 1/

√
kR

zi = (Bi0(z)+ Bi1(z)ε+ Bi2(z)ε2
+ · · ·) exp

(
g0(z)
ε

)
. (3.6)

Two types of WKB solutions are obtained by substituting zi into the system of
equations (3.2) (Lees & Lin 1946). The first type has the form

B10 = const.1(u− c)−3/4
(

i
ν

)−1/4
,

B30 = B40 = B50 = 0,

B31 =−i const.1(u− c)−5/4
(

i
ν

)−3/4
,

B41 = 0,

g0 =

∫ z

z∗

√
i
ν (u− c) dz,


(3.7)

which is called the viscous solution. The second one has the form

B10 = B30 = B40 = 0,
B41 = 0,

B50 = const.2T1/2(u− c)−1/4
(

iPr
ν

)1/2
,

g0 =

∫ z

z∗

√
iPr
ν (u− c) dz,


(3.8)

which is called the temperature solution.
Both viscous and temperature solutions contain a pair of solutions, differing in the

choice of the root branch in g0.

3.4. Pressure disturbance
Thus, the general solution of the system (3.2) consists of two regular solutions, two
viscous solutions and two temperature solutions (Lees & Lin 1946). We have to
choose a certain branch of the roots in g0 in the viscous and temperature solutions
to satisfy the radiation condition at infinity (as the other branches correspond to
exponentially growing solutions as z → +∞). Hence, a single solution of each
type remains of the two viscous and two temperature solutions. From two linearly
independent regular solutions, one linear combination can be formed to satisfy the
radiation condition at infinity. Thus, the solution of the system of (3.2), which satisfies
the radiation condition, is now a combination of only three linearly independent
solutions (regular, viscous and temperature)

f (z)= c1 fr(z)+ c2 fv(z)+ c3 ft(z),
ϕ(z)= c1ϕr(z)+ c2ϕv(z)+ c3ϕt(z),
θ(z)= c1θr(z)+ c2θv(z)+ c3θt(z),

 (3.9)

as well as
π(z)= c1πr(z)+ c2πv(z)+ c3πt(z), (3.10)
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586 V. Bondarev and V. Vedeneev

where the indexes r, v, t denote regular, viscous and temperature solutions,
respectively.

These solutions can be represented by the following expansions in series of the
small parameter ε

fr = finv + f 2
r ε

2
+ · · · ;

fv,t = ( f 0
v,t + f 1

v,tε+ f 2
v,tε

2
+ · · ·) exp

(g0(v,t)

ε

)
,

}
(3.11)

where index ‘inv’ denotes the inviscid solution (i.e. the solution of the Rayleigh
equation). Similar expansions hold for ϕ, θ and π.

Expressions (3.7) and (3.8) show that B40=B41=0 for both viscous and temperature
solutions, i.e. πv(z)= O(ε2) and πt(z)= O(ε2). Since πr is a regular solution of the
system (3.2), then

πr(z)=πinv(z)+O(ε2). (3.12)

We obtain that the pressure perturbation π(z) (3.10) can be written as

π(z)= c1(ε)πinv(z)+O(ε2). (3.13)

Therefore, to find the first approximation for the pressure perturbation, we need to
calculate c1(ε), since only it has a linear term in the expansion in ε (3.13).

To calculate c1(ε), we consider the no-slip condition on the plate surface and
assume that the plate is adiabatic with respect to the perturbations (which, however,
does not imply heat insulation for the mean flow):

z1 = f = 0,
z3 = ϕ =−ic,
z6 = θ

′
= 0.

 (3.14)

Substitute (3.9) into the boundary conditions to obtain

c1 fr(0)+ c2 fv(0)+ c3 ft(0)= 0,
c1ϕr(0)+ c2ϕv(0)+ c3ϕt(0)=−ic,

c1θ
′

r(0)+ c2θ
′

v(0)+ c3θ
′

t (0)= 0.

 (3.15)

Using Cramer’s rule, we calculate c1 =∆1/∆, where

∆1 =

∣∣∣∣∣∣
0 fv ft
−ic ϕv ϕt

0 θ ′v θ ′t

∣∣∣∣∣∣, ∆=

∣∣∣∣∣∣
fr fv ft
ϕr ϕv ϕt
θ ′r θ ′v θ ′t

∣∣∣∣∣∣, (3.16a,b)

and values of the functions are taken at z = 0. Next, the velocity and temperature
perturbations in the form of expansions (3.11) should be substituted here. Taking into
account g0 for the viscous and temperature cases (3.7), (3.8), we obtain:

c1(ε)=
−ic
ϕinv
+
−ic
ϕinv

(
finv

ϕinv

ϕ1
v

f 0
v

)
ε+O(ε2). (3.17)

Using the system of equations for the inviscid approximation (Lees & Lin 1946)
and the expressions for ϕ1

v , f 0
v from the § 3.3 (B31 and B10, respectively), we obtain

finv

ϕinv
= i
−M2(u− c)u′ϕinv + ϕ

′

invT
ϕinv(T −M2(u− c)2)

;
ϕ1
v

f 0
v

=
−i
g′0
=−i

(√
i
ν
(u− c)

)−1

. (3.18a,b)
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Influence of the viscous boundary layer perturbations on panel flutter 587

Substitute these expressions into (3.17), and use the boundary condition ϕinv(0)=−ic.
Then the expression for c1(ε) takes the form

c1(ε)= 1+

(√
i
ν
(u− c)

)−1

×
−M2(u− c)u′ϕinv + ϕ

′

invT
ϕinv(T −M2(u− c)2)

ε+O(ε2), (3.19)

which can be rewritten with the use of the inviscid pressure perturbation (3.4) as

c1(ε)= 1+

(√
i
ν
(u− c)

)−1 (
−

u′(0)
c
+

T(0)
γM2c2

πinv(0)
)
ε+O(ε2). (3.20)

The following final expression for the pressure perturbation (3.13) is found:

π(z)=

1+

(√
i
ν
(u− c)

)−1 (
−

u′(0)
c
+

T(0)
γM2c2

πinv(0)
)
ε


z=0

πinv(z)+O(ε2).

(3.21)

3.5. Pressure perturbation for phase speeds close to real
To analyse the boundary layer effect on the single-mode panel flutter, below we will
study perturbations that are close to neutral, and have only a small damped or growing
component, i.e. |Im c| ∼µ�|Re c|. To simplify (3.21), we will identify which branch
of the square root should be used in (3.21). It was previously found (3.7) that

g0(z)=
∫ z

z∗

√
i
ν
(u(z)− c) dz (3.22)

and it is easy to trace that its branch coincides with the branch of the square root in
(3.21). The branch of the root is chosen so that the radiation condition at infinity is
satisfied: Re g0(z) < 0 (therefore, Re g′0(z) < 0) as z→+∞. We will now investigate
how this branch is continued from z→+∞ down to z= 0.

First, let us consider waves of phase speeds 0<Re c<M, and find the value g′0(z)
for z = 0. At large z the radicand takes the form iH, where H is a positive real
quantity. Therefore, at large z, we choose the root branch with the argument −3π/4.
As z decreases down to the turning point zc, where u(zc) − c = 0, the radicand is
equal to zero and the root has the branch point. The WKB solutions are invalid in the
neighbourhood of the turning point. To avoid the singularity at real z, it is necessary
to represent the phase speed as c= Re (c)+ si, where s is a small positive quantity;
in this case the real z axis is located below the point zc (§ 3.2). In figure 3(a,b) the
values of the functions u(z) and u(z) − c are illustrated in the complex planes, the
arrows show variations of the functions as z decreases from +∞ to 0. In figure 3(c)
the values of the two branches

√
i(u− c)/ν are shown. Due to the radiation condition,

we choose a branch that is located to the left of the imaginary axis. Finally, as s tends
to zero, for real c we obtain

g′0(0)=
√

c
ν
× e3πi/4, 0<Re c<M. (3.23)

The cases Re c< 0,Re c>M are considered similarly, except that there is no need
to add a small value si (figure 3d). Finally, we obtain:

g′0(0)=
√∣∣∣ c

ν

∣∣∣× e−3πi/4, Re c< 0; g′0(0)=
√

c
ν
× e3πi/4, Re c>M. (3.24a,b)
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0

0 0

0

M M

1

12

2

(a) (b)

(c) (d)

FIGURE 3. Complex planes u(z) (a); u(z)− c (b);
√

i(u− c)/ν (c) in the case 0< c<M.
Thin arrows show the mappings of 0< z<+∞ to corresponding planes for c=Re (c)+ si,
0< s� 1, and thick arrows represent their limit as s→+0. Complex plane

√
i(u− c)/ν

in the case c< 0, c>M (curves 1, 2, respectively) (d).

3.6. Dispersion relation in case of an infinite length plate
Hereafter, for consistency with our previous studies (Vedeneev 2013; Bondarev &
Vedeneev 2016), we will use different scales, which were described in § 2.1, for
non-dimensionalisation of the expression (3.21), and to redefine the small parameter
ε= 1/

√
R. As a result, by using simple algebra, we obtain

π(z) =
[

1+ ε
Q

|
√

k|

∣∣∣ c
ν

∣∣∣−1/2
(Mδ)1/2

(
−

u′(0)
c
+

T(0)
µc2 πinv(0)

)]
πinv(z)

+O(εµ2)+O(ε2), (3.25)

πinv(z)=−
iµ
k

[
(u− c)ϕ′inv − u′ϕinv

T −M2(u− c)2

]
, (3.26)

where
Q= e−3πi/4, Re c> 0,
Q= e3πi/4, Re c< 0,

}
(3.27)
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Influence of the viscous boundary layer perturbations on panel flutter 589

and µ is the density of the mean flow rated to the plate material density. Note that,
due to the definition of the Reynolds number, ν(z) is the kinematic viscosity rated to
its value in the mean flow.

Substituting the expression for the pressure perturbation (3.25) into (2.4), we obtain
the explicit form of the dispersion relation for a plate in a boundary layer flow:

D(k, ω) = Dk4
+M2

wk2
−ω2

+µ

[
1+ ε

Q

|
√

k|

∣∣∣ c
ν

∣∣∣−1/2
(Mδ)1/2

(
−

u′(0)
c
+

T(0)
c2 Πinv(0)

)]
Πinv(0)

+O(εµ2)+O(ε2)= 0, (3.28)

where

Πinv =
πinv

µ
=−

i
k

[
(u− c)ϕ′inv − u′ϕinv

T −M2(u− c)2

]
. (3.29)

By using asymptotic expansions for the solutions of (3.28) in ε and µ (the case of
long waves), Bondarev & Vedeneev (2017) studied the effect of viscosity on travelling
waves in an infinite length plate for small boundary layer thickness. It was shown
that the effect of the finiteness of the Reynolds number (compared with the inviscid
approximation) can have a destabilising and a stabilising effect, depending on the
phase speed value of the perturbation wave. Namely, in the case of 0<Re c<M− 1
the viscous term leads to an increase of the growth rate of the perturbations; on the
contrary, in the case of M− 1<Re c<M+ 1 a viscous term always has a stabilising
effect. For an arbitrary thicknesses of the boundary layer, the case of a long wave was
analytically investigated for all possible values of phase speed. It was shown that the
viscosity can have both a stabilising and destabilising effect.

In the next section we will investigate the influence of the viscous boundary layer
perturbations on the stability of finite plates, which is the main goal of this study.

4. Single-mode flutter of finite plates with consideration of viscous perturbations
In this section, we assume that the plate length is finite but sufficiently large so

that Kulikovskii’s instability criterion (§ 2.2) may be used, and the Reynolds number
is large but finite.

4.1. Method for solving asymptotic eigenvalue problem
Applying Kulikovskii’s global instability criterion, the position of the curve Ω in the
ω-plane was calculated by Bondarev & Vedeneev (2016) in the case of inviscid shear
layer approximation for the generalised convex profile and a profile with a generalised
inflection point for various thicknesses of the boundary layer. We denote this curve as
Ωinv. As before, the index ‘inv’ refers to the inviscid approximation.

Now we will investigate how the shape of the Ω-curve changes in the viscous
approximation, which we denote as Ωv, i.e. how the viscosity will affect the growth
rate (or damping rate) of the perturbations. Let us introduce a complex function
F(ω, ε)= k2(ω, ε)− k3(ω, ε), where k2 and k3 are the spatial roots of the dispersion
relation (3.28) corresponding to forward- and backward-travelling waves, as defined
in § 2.2.

Taylor expansion of F(ω, ε) around a point (ω0, 0), where ω0 ∈Ωinv, has the form:

F(ω, ε)= F(ω0, 0)+ 1ω
∂F
∂ω

∣∣∣∣
ε=0
ω=ω0

+ ε
∂F
∂ε

∣∣∣∣
ε=0
ω=ω0

+ o(1ω, ε), ω=ω0 +1ω. (4.1)
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590 V. Bondarev and V. Vedeneev

Note that the curve Ωv for a fixed ε= 1/
√

R is given by the equation Im F(ω, ε)= 0.
Simplifying this expression and neglecting infinitesimal terms, we obtain:

Im

(
1ω

∂F
∂ω

∣∣∣∣
ε=0
ω=ω0

+ ε
∂F
∂ε

∣∣∣∣
ε=0
ω=ω0

)
= 0. (4.2)

We are interested in the offset of the Ωv-curve from Ωinv, i.e. for a given Reω0,
ω0 ∈Ωinv, we search for the value 1ω, such that ω=ω0 +1ω lies on the Ωv-curve,
where 1ω = iA, A ∈ R. If A > 0 (A < 0) then the viscosity has a destabilising
(stabilising) effect. Using the expression (4.2), we obtain

A=−ε

[
Im
∂F
∂ε

(
Re
∂F
∂ω

)−1
]

ε=0
ω=ω0

. (4.3)

First, let us find Im (∂F/∂ε). According to the definition of the function F:

Im
∂F
∂ε

∣∣∣∣
ε=0
ω=ω0

= Im
∂k2

∂ε

∣∣∣∣
ε=0
ω=ω0

− Im
∂k3

∂ε

∣∣∣∣
ε=0
ω=ω0

, (4.4)

where kj(ω, ε), j= 2, 3 are defined by (2.4)

kj = (−1)j

√
−M2

w +
√

M4
w + 4D(ω2 −πj(0, ε))

2D
. (4.5)

Substitution of (4.5) and (3.25) into (4.4) yields

Im
∂F
∂ε

∣∣∣∣
ε=0
ω=ω0

=−
1
2
(Mδ)1/2

× Im

[
(k2|
√

k2|)
−1√

M4
w + 4D(ω2 −π2,inv(0))

∣∣∣c2

ν

∣∣∣−1/2
e−3πi/4

(
−

u′(0)
c2
+

T(0)
µc2

2

π2,inv(0)
)

π2,inv(0)

−
(k3|
√

k3|)
−1√

M4
w + 4D(ω2 −π3,inv(0))

∣∣∣c3

ν

∣∣∣−1/2
e3πi/4

(
−

u′(0)
c3
+

T(0)
µc2

3

π3,inv(0)
)

π3,inv(0)

]
ε=0
ω=ω0

,

(4.6)

where cj =ω/kj.
To solve the dispersion equation (2.4) in the inviscid case, and find the pressure

disturbance πj,inv(0), j = 1, 2, we used an iterative procedure. At each iteration
we numerically solve the Rayleigh equation to find the velocity perturbation ϕj,inv,
j = 1, 2, and its derivative. The boundary value problem is reduced to two initial
value problems by the standard shooting method, which are both solved along the
chosen path, passing below the critical point (according to Lin’s rule, § 3.2), through
the Runge–Kutta method. Next, by using formula (3.26), we calculate the inviscid
unsteady pressure πj,inv(0), j= 1, 2, on the plate surface, which is used in finding the
next approximation (4.5) to the solution of the dispersion equation. This method of
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FIGURE 4. Point-by-point calculation of the curve Ωinv in the ω-plane.

solving the dispersion equation is described in more detail by Bondarev & Vedeneev
(2016).

Next, let us calculate Re (∂F/∂ω). Applying the same numerical procedure that was
used by Bondarev & Vedeneev (2016) to find the curve Ωinv, we calculate ωj

0 ∈Ωinv

in a point-by-point manner (for example, as shown in figure 4), k2(ω
j
0), k3(ω

j
0) and

F(ωj
0). Then Re (∂F/∂ω)

ε=0,ω=ωj
0
, where ωj

0 ∈Ωinv is calculated numerically, using the
first-order finite difference:

Re
∂F
∂ω

∣∣∣∣ ε=0
ω=ω

j
0

=Re

(
F(ωj

0)− F(ωj−1
0 )

ω
j
0 −ω

j−1
0

)
. (4.7)

4.2. Results
As examples, we considered two boundary layer profiles representing a typical
generalised convex profile and a profile having generalised inflection points (the same
profiles were studied by Bondarev & Vedeneev (2016).

(i) The generalised convex profile. The velocity distribution is as follows:

u(z)=M sin
(π

2
z
δ

)
(4.8)

for M = 1.6 and

D= 23.9, Mw = 0, µ= 0.00012, γ = 1.4, (4.9a−d)

which correspond to a steel untensioned plate at 3000 m, or an aluminium plate at
11 000 m above sea level. For simplicity, in all examples hereafter we assume that the
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FIGURE 5. Generalised convex boundary layer profile (a) (4.8), (b) (4.10).

Prandtl number Pr= 1 and the plate is heat insulated so that the steady temperature
profile T(u) is given by the expression (Schlichting 1960):

T(u)= 1+
γ − 1

2
(M2
− u2). (4.10)

The velocity and temperature distributions (4.8) and (4.10) are shown in figure 5.
(ii) The boundary layer profile with a generalised inflection point:

u(z)=M
(

1−
(

1−
z
δ

)2.4
)
× cos

(
0.7
(

1−
z
δ

)7
)7

(4.11)

for M = 1.3, parameters (4.9a–d) and the temperature profile (4.10), which are
shown in figure 6. Although the velocity profile (4.11) looks sophisticated, it simply
represents a function with one generalised inflection point located in the supersonic
(with respect to the mean flow) part of the layer.

4.2.1. Results for generalised convex boundary layer profile
Let us now investigate the viscous growth rates Im1ω = A in the case of the

generalised convex boundary layer profile, which is defined by the velocity profile
(4.8) and the temperature profile (4.10). The value of the kinematic viscosity ν(0)=
T(0)1.75

≈ 2.0616 according to Sutherland’s formula for the dynamic viscosity of air
and the perfect gas law for the density–temperature relation. For visualisation of the
results, ε = 0.01 was taken in the calculations; however, as can be seen from (4.3),
the qualitative effect of viscosity, stabilising or destabilising, does not depend on ε.

Figure 7 shows the viscous term A versus Reω0 for different boundary layer
thicknesses. The following observations are made:

(i) For thin boundary layer thickness (δ= 0.1, figure 7a), the shown frequency range
corresponds to a destabilising effect of viscosity, except for Reω0 ∈ [0.076;0.093].
The highest viscous growth rates take place at Reω0 < 0.076, while for Reω0 >

0.093 the growth rates tend to zero.
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FIGURE 6. Boundary layer profile with generalised inflection point (a) (4.11), (b) (4.10).

(ii) For increased boundary layer thickness (δ = 2, figure 7b), there are two small
frequency segments, Reω0 ∈ [0.086; 0.101] and Reω0 ∈ [0.135; 0.17], where the
viscous term A is negative. We note a strongly marked maximum at Reω0 ≈ 0.11.
For Reω0 > 0.17 viscous growth rates are close to zero.

(iii) For δ > 3 (figure 7c), there is only one frequency threshold separating the
stabilising and destabilising effect of viscosity. In the case of δ = 3 the
maximum viscous growth rate A is lower, and the frequency range of the
growing eigenmodes is wider than for δ = 2.

(iv) For thick boundary layers (δ > 4, figure 7d), the maximum viscous growth rate
continues decreasing down to zero. However, for all considered thicknesses δ
there remains a frequency range where the viscosity effect is destabilising.

4.2.2. Results for profile with a generalised inflection point
Next, let us consider a boundary layer profile with a generalised inflection point

defined by (4.11) and (4.10), which gives ν(0)≈ 1.6645. As before, for visualisation
purposes we take ε = 0.01. The calculated viscous term A versus Reω0 is shown in
figure 8. The results can be summarised as follows:

(i) For small δ = 0.1 (figure 8a), there is a similar behaviour to the case of
the generalised convex profile: all frequencies correspond to positive viscous
growth rates, except for Reω0 ∈ [0.02; 0.037]. The highest viscous growth rates
correspond to low frequencies (Reω0 < 0.02), while for Reω0 > 0.037 growth
rates are close to zero, but stay positive.

(ii) For the boundary layer thickness δ = 2 (figure 8b), there is a single frequency
range with a destabilising effect of the viscosity Reω0 ∈ [0.006; 0.022], with a
pronounced maximum viscous growth rate at Reω0 ≈ 0.02. For Reω0 > 0.022
there is a dip into the stability region A< 0. After the dip, viscous growth rates
tend to zero as Reω0 increases.

(iii) For higher δ, the maximum viscous growth rate decreases as δ increases
(figure 8c–e) and almost disappears at δ = 14 (figure 8f ).

(iv) For a very thick boundary layer δ = 14 viscous growth appears at small Reω0.

Comparing the results of the inviscid approximation (Ωinv) with the viscous term
effect (figures 7 and 8), we notice that frequencies Reω0 corresponding to the
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FIGURE 7. Grey and black lines represent the viscous term A versus Reω0 and curve Ωinv
(Bondarev & Vedeneev 2016) in the ω-plane, respectively, for the boundary layer profile
(4.8), (4.10) and boundary layer thickness δ = 0.1 (a), δ = 2 (b), δ = 3 (c), δ = 4 (d).

maximum ‘inviscid’ and ‘viscous’ growth rates are close to each other for moderate
boundary layer thicknesses. Hence, if the inviscid shear layer destabilises the plate,
i.e. the plate flutters, the viscosity surprisingly yields even more destabilisation. To
explain this effect, the relation between the ‘inviscid’ and ‘viscous’ maximum growth
rates is studied below.

4.3. The relation between growth rate peaks produced by inviscid and viscous terms
First, let us find the connection between growth rates and pressure disturbances in
the inviscid and viscous approaches. We will assume that µ, which is the ratio of the
mean flow density to the plate material density, is a small parameter (typically of the
order of 10−3 or less). Let us also assume that ω=ωR + iωI , ωR� |ωI| and ωR�µ,
which is valid for single-mode flutter (Vedeneev 2005, 2013). Then from (2.4) the
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FIGURE 8. Grey and black lines represent the viscous term A versus Reω0 and curve Ωinv
(Bondarev & Vedeneev 2016) in the ω-plane, respectively, for the boundary layer profile
(4.11), (4.10) and boundary layer thickness δ = 0.1 (a), δ = 2 (b), δ = 4 (c), δ = 6 (d),
δ = 10 (e), δ = 14 ( f ).

Taylor expansion yields

kj(ωR + iωI, µ, ε)= kj(ωR, 0, ε)+ iωI
∂kj

∂ω

∣∣∣∣ωI=0
µ=0

+µ
∂kj

∂µ

∣∣∣∣ωI=0
µ=0

, (4.12)
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where

∂kj

∂ω

∣∣∣∣ωI=0
µ=0

=
ω

kj(M2
w + 2Dk2

j )

∣∣∣∣∣ωI=0
µ=0

, (4.13)

∂kj

∂µ

∣∣∣∣ωI=0
µ=0

=−
Πj(0)

2kj(M2
w + 2Dk2

j )

∣∣∣∣∣ωI=0
µ=0

. (4.14)

Then, we substitute (4.12) into Kulikovskii’s global instability equation

Im k2(ω, µ, ε)− Im k3(ω, µ, ε)= 0 (4.15)

and obtain the equation for ωI , which is valid for any ε

ωI =
µ

4ωR
Im (Π2(0)+Π3(0))ωI=0

µ=0.
(4.16)

Thus, the growth rate of the finite plate eigenmode depends on the sum of pressures
Π2 and Π3 produced by downstream-travelling and upstream-travelling plate waves,
respectively.

Therefore, for ω0 ∈Ωinv in an inviscid approximation (ε= 0) we have:

Imω0 =
µ

4Reω0
Im (Π2,inv(0)+Π3,inv(0)) Imω0=0

µ=0

=
µ

4Reω0
Im (Π2,inv(0)+Π3,inv(0)) Imω0 6=0

µ6=0
+O(µ2). (4.17)

For viscous Imω ∈Ωv (ε 6= 0) we similarly obtain:

Imω =
µ

4Reω0
Im (Π2(0)+Π3(0)) Imω=0

µ=0

=
µ

4Reω0
Im (Π2(0)+Π3(0)) Imω 6=0

µ6=0
+O(µ2). (4.18)

Thus, neglecting the small term O(µ2), we can rewrite (4.17) and (4.18) as

Imω0 =
µ

4Reω0
Im (Π2,inv(0)+Π3,inv(0))=

1
4Reω0

Im (π2,inv(0)+π3,inv(0)), (4.19)

Imω=
µ

4Reω0
Im (Π2(0)+Π3(0))=

1
4Reω0

Im (π2(0)+π3(0)). (4.20)

According to Vedeneev (2005), the growth of a finite length plate eigenmode
in uniform flow occurs due to the growth of the downstream-travelling wave
(Im π2,inv(0)>0), whereas the upstream-travelling wave is always damped (Im π3,inv(0)
< 0). Inviscid boundary layer calculations (Bondarev & Vedeneev 2016) confirm this
statement; namely, the frequencies Reω0 of the maximum growth rates Imω0 and
the maximum values of the pressure disturbance Im π2,inv(0) are close to each
other. An example is shown in figure 9, where the peak locations of Imω0 and
Im π2,inv(0) almost coincide for both types of the boundary layer. In other words,
the frequency Reω0 of maximum growth rate in (4.19) is determined only by the
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FIGURE 9. Curve Ωinv in the ω-plane (a,b); pressure disturbance Im π2,inv versus Reω
(c,d); pressure disturbance Im π3,inv versus Reω (e, f ). The case of the boundary layer
profile (4.8), (4.10) (a,c,e); and (4.11), (4.10) (b,d, f ); boundary layer thickness δ = 2.

pressure perturbation π2,inv(0) produced by the downstream-travelling wave. Present
viscous calculations show that this conclusion is also valid for small ε in the viscous
case. Namely, the frequency Reω0 of maximum growth rate is determined only by
π2(0) (4.20).
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FIGURE 10. Im1π2 versus pI for different pR.

Let us now investigate how inviscid pressure disturbance π2,inv affects the viscous
pressure disturbance π2. Denote Im π2 = Im π2,inv + Im1π2. Using (3.25), we obtain

1π2 =Q1e−3πi/4

(
−

u′(0)
c
+

T(0)
µc2 πinv

)
πinv, Q1 > 0. (4.21)

We fix pR = Re π2,inv and assume that at the peak of inviscid growth rate pI =

Im π2,inv > 0, |pR| � |pI|, which is in accordance with the calculation results. By
neglecting higher-order terms, equation (4.21) transforms to

Im (1π2)≈Q2pI +Q3p2
I , (4.22)

where Q2,3 > 0. Thus, from (4.22) we conclude that for peak values of Im π2,inv > 0
the viscous shift Im1π2 is positive and, consequently, the effect of finite Reynolds
number is destabilising.

Let us consider an example: the convex boundary layer profile (4.8), (4.10),
δ= 2 and the phase speed as c2 = 0.72544+ 0.00366i, which corresponds to inviscid
calculations with Reω0 = 0.1076. We calculate Im1π2 for different pR and pI using
(4.21) and for simplicity assuming that Q1 = 1. As ‘inviscid’ calculations show that
for this boundary layer pR ∈ [−0.0001; 0.0001] for all considered ω0, values of pR
are taken from this range as representative. Figure 10(a) shows that imaginary part
of the viscous pressure disturbance Im1π2 is positive and increases when Im π2,inv
is sufficiently large.

Similar conclusions follow from calculations in the case of the profile with
a generalised inflection point (4.11), (4.10), δ = 2 and the phase speed c2 =

0.29960 + 0.01508i, which corresponds to inviscid calculations with Reω0 = 0.0188
(figure 10b). The values of pR ∈ [−0.00006; 0.00001] are taken as representative.

Combining the results discussed above, we conclude that the peak value of inviscid
growth rate is produced by the peak of inviscid pressure disturbance Im π2,inv, which,
in turn, yields the maximum of Im1π2 and, hence, of the viscous growth rate A.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

om
on

os
ov

 M
os

co
w

 S
ta

te
 U

ni
ve

rs
ity

, o
n 

17
 A

ug
 2

01
8 

at
 1

2:
13

:4
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.527
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Influence of the viscous boundary layer perturbations on panel flutter 599

This means that when the inviscid shear layer essentially destabilises the plate (the
peak value of the growth rate), viscosity always produces even more destabilisation
(i.e. larger growth rate).

5. Discussion and concluding remarks

Let us now review the assumptions used throughout this study. First, we assumed
that Reynolds number is finite and large (R→ ∞), which was used in the WKB
expansions of the solutions of the equations for the perturbations. The same
assumption used in the stability analysis of the boundary layer over a flat rigid plate
gives quantitatively correct results for R ∼ 1000 or larger, and yields a qualitatively
correct critical Reynolds number Rcr = 421 versus the exact value Rcr = 520 (Drazin
& Reid 2004, the Reynolds number here is based on displacement thickness). For
the plane Poiseuille flow, WKB approximation (corrected by the local turning point
approximation) for the flow perturbations yields Rcr = 5397 versus the exact value
Rcr = 5772 (Drazin & Reid 2004). Note that for the eigenmodes corresponding to
Rcr in both of these flows, the main reason of the deviation of the WKB prediction
from the exact value is that the critical layer is merged with the viscous sublayer
(triple-deck structure). For a five-deck perturbation structure, which is considered in
this study, the WKB expansion is much more accurate. Hence, we may expect that
our results are valid for R ∼ 1000 and larger, i.e. they cover most of the boundary
layers expected in aeronautical applications.

The other assumption used is the large plate length (L → ∞), which was
employed in Kulikovskii’s instability criterion. A detailed comparison between the
results predicted by this criterion and the numerical solution of the full aeroelastic
problem (Vedeneev 2012, 2016) shows that for the two-dimensional problem the
calculated flutter boundary is accurate for L ∼ 100 and larger (the panel length is
non-dimensionalised by its thickness), which covers most of the skin panel dimensions
used in flight vehicles. This estimate was obtained for the uniform flow analysis. For
lower L, the prediction of the global instability theory does not correlate with the
full eigenvalue problem, because the trimming of the plate deflection waves by the
rigid plane before the plate yields significant distortion of the pressure waves over
the plate. As this distortion has no relation to the boundary layer, we expect that the
results obtained for the boundary layer flow are valid for the same lengths, i.e. for
L & 100.

With these assumptions, we considered two types of boundary layer: a generalised
convex layer and a layer with a generalised inflection point. The effect of viscosity
is, in general, quite complex: there are eigenmodes that are stabilised by the viscous
perturbations, and there are those that are destabilised. Namely, in the case of
a generalised convex boundary layer, the increase of the layer thickness leads
to the increase of the frequencies of growing eigenmodes and the decrease of
their growth rates. For sufficiently thick boundary layers, the plate becomes fully
stabilised; however, this occurs at a thicker boundary layer than in the inviscid shear
layer approximation. For the boundary layer with a generalised inflection point, the
thickening of the boundary layer first yields a more significant increase of the growth
rates than in the inviscid shear layer approximation. For higher thicknesses, growth
rates decrease down to 0 as δ→∞.

An important phenomenon observed is that in the eigenfrequency range that
corresponds to the highest growth rate in the inviscid approximation, the effect of
viscosity is always destabilising, i.e. growth rates becomes larger. In § 4.3 we proved
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600 V. Bondarev and V. Vedeneev

this in a closed form for any type of the boundary layer. Hence, when an inviscid
shear layer produces large growth rate, viscosity even more destabilises the plate. This
is especially surprising in the case of the boundary layer profile with a generalised
inflection point: single-mode flutter becomes more severe due to the boundary layer
than in uniform flow.

All studies of the boundary layer effect on panel flutter published so far (Miles
1959; Gaspers et al. 1970; Muhlstein et al. 1968; Dowell 1971, 1973; Hashimoto
et al. 2009; Alder 2015, 2016) consider only a boundary layer over a flat plate
and yield panel stabilisation due to the boundary layer. In our previous studies
(Vedeneev 2013; Bondarev & Vedeneev 2016) we proved that in the inviscid shear
layer approximation this holds for any generalised convex boundary layers, such as
flows over convex walls. However, we also proved that there exist boundary layer
profiles, such as flows over concave walls, that increase growth rates of the panel
eigenmodes, i.e. make flutter more severe. Results of the present study show that
for such a boundary layer, flutter at finite Reynolds numbers becomes even more
destructive: growth rates are larger at lower Reynolds numbers. Therefore, in the
design of flight vehicles, special attention needs to be paid to skin panels located at
concave geometries and near corner points.
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