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The paper describes a new, simple method for the formation of free round jets with long laminar
regions by a jet-forming device of ∼1.5 jet diameters in size. Submerged jets of 0.12 m diameter
at Reynolds numbers of 2000–12 560 are experimentally studied. It is shown that for the optimal
regime, the laminar region length reaches 5.5 diameters for Reynolds number ∼10 000 which is not
achievable for other methods of laminar jet formation. To explain the existence of the optimal regime,
a steady flow calculation in the forming unit and a stability analysis of outcoming jet velocity profiles
are conducted. The shortening of the laminar regions, compared with the optimal regime, is explained
by the higher incoming turbulence level for lower velocities and by the increase of perturbation
growth rates for larger velocities. The initial laminar regions of free jets can be used for organising
air curtains for the protection of objects in medicine and technologies by creating the air field with
desired properties not mixed with ambient air. Free jets with long laminar regions can also be used
for detailed studies of perturbation growth and transition to turbulence in round jets. Published by
AIP Publishing. https://doi.org/10.1063/1.5021017

I. INTRODUCTION

Free jets and other shear flows often occur in nature
and various technologies and are widely studied. Turbulent
jets and their breakdown have been thoroughly studied over
several decades in the context of many industrial applica-
tions, including mixing, combustion, noise generation, and
others.1,2,6,8,9,18,22,25,29,30,43,45

Laminar jets are studied much less because of their imme-
diate breakdown in normal conditions. If created, the laminar
initial regions of free jets of sufficient length could be used
to organise air curtains, which provide zones of clean air
not mixed with the ambient medium. Local clean zones can
be used in medicine, medical industry, microelectronics, and
other technological processes. The main impediment to the
creation of jets with long laminar regions at high Reynolds
numbers is their instability, which results in the turbulisation
of the flow, typically occurring at the distance of the order of
the jet diameter from the orifice. Sections I A and I B give a
brief state-of-the-art review of round jet stability and experi-
mental methods of producing laminar jets. Extensive reviews
of subsonic jet stability are given by Michalke,32 Morris,35 and
Grek et al.14

A. Studies of jet stability

The necessary instability condition of a unidirectional
round jet of the inviscid fluid has the following form:38 the
expression

Q(r) =
ru′

n2 + α2r2
(1)

should have a numerical maximum in some point of the flow;
this condition is generalisation of the inflection-point instabil-
ity condition for planar flows to axisymmetric flows. In (1), n

and α are azimuthal and axial wavenumbers of the Fourier
component of the disturbance, respectively, u is the mean
velocity, and r is the radial coordinate. Later, Batchelor and
Gill4 generalised Fjørtoft’s condition12 and Howard’s semicir-
cular theorem16 to axisymmetric shear flows. As typical exam-
ples, they examined round jets of a “top-hat” profile, which
represents a jet near the orifice (including its limit form of
cylindrical vortex sheet), and a self-similar “far-downstream”
profile.24 For the “top-hat” profile, eigenmodes with numer-
ous (but finite-amount) n are growing (all n are growing for
the limit case of a cylindrical vortex sheet). For the “far-
downstream” profile, only helical sinuous modes (n = 1) are
growing.4

For viscous perturbations of the “far-downstream” profile,
all axisymmetric disturbances, n = 0, are damped, whereas for
n = 1, the critical Reynolds number is 37.6, that is, very small.34

For the parabolic jet profile, the axisymmetric perturbations,
n = 0, are also damped, and for helical perturbations,
Recr = 32.8 and 171 for n = 1 and 2, respectively.19 All these
results are obtained in a parallel-flow approximation which is
not valid for such low Reynolds numbers, so it can only be
concluded that for larger Re, where the jet flow is close to
unidirectional, the jet is unstable.

If the parallel-flow approximation is not used,42 Recr for a
helical mode with n = 1 of the “far-downstream” profile drops
from 37.6 to 28.4. However, a more surprising result is that the
axisymmetric mode n = 0, which is damped in parallel-flow
approximation, grows, and its Recr = 15.0 is even less than for
the helical mode.

Calculations of the absolute instability boundary of jet
flows show that free jets of incompressible fluid are always
convectively unstable, at least in parallel-flow approxima-
tion.33 This result explains the existence of sufficiently long
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laminar portions of jets at Re > Recr in many experimental
studies (Sec. I B).

Numerous recent studies are devoted to the governing of
submerged jets and the suppression of turbulence in free shear
layers of such jets.14,17,46 A few of them are devoted to the
development of perturbations20,23 in free jets. In the context
of this paper, two studies can be especially mentioned. First,
Cohen and Wygnanski7 theoretically and experimentally stud-
ied perturbation growth near the orifice, where the jet profile is
“top-hat.” Perturbations with n = 0 and 1 demonstrate a good
agreement between experiment and linear inviscid stability
analysis. Second, Kozlov et al.23 studied round jets flowing
from a round pipe, with various incoming conditions and pipe
lengths. They showed that the longer laminar portion of a jet
was obtained with longer pipes, and the longest result was
obtained with the parabolic profile’s formation at the pipe
outlet.

B. Experimental methods of creating laminar jets

Because of extremely small Recr for jets, their laminar
region lengths are determined by the flow characteristics at the
outlet of the jet-forming device, that is, by the velocity profile,
which is responsible for linear perturbation growth rates, and
the intensity of turbulence, which is responsible for the initial
amplitudes of the perturbations.

To obtain round laminar jets, the most popular method
uses laminar pipe flow, as shown in Fig. 1(a). Viilu44 used
pipes of diameters varying from 0.46 to 1.32 mm. Its length-to-
diameter ratio exceeded 50 to produce the parabolic Poiseuille
profile at the pipe outlet. The experimental Recr obtained
was between 10.5 and 11.8 (hereafter, for consistency, the
Reynolds number is always based on the orifice diameter and
average velocity, even if the authors of the cited papers used
different definitions). McNaughton and Sinclair31 experimen-
tally studied liquid-into-liquid jets in short cylindrical vessels
using a pipe with the length-to-diameter ratio of 40 for the
jet of the diameter 1′′. The maximum length of the laminar
region was 18′′ at the Reynolds number in the pipe of 800.
For Re ≥ 3000, the jet was fully turbulent. A similar scheme

FIG. 1. Experimental device for creating (a) a round jet23 and (b) coaxial
jets.36

[Fig. 1(a)] was used by Kozlov et al.23 Large-scale vorti-
cal structures coming from the fan blades were broken, and
the flow was laminarised by passing through the honeycomb
and grids into the antechamber of the jet-forming device. At
the nozzle exit, a laminar jet is formed in a certain range of
Reynolds numbers. Then this jet enters a long smooth cylindri-
cal pipe of diameter D = 0.02 m. The transition to turbulence in
the pipe does not occur if the turbulence intensity of an incom-
ing jet is sufficiently low. The Poiseuille parabolic velocity
profile was obtained23 for the Reynolds number 6667 for the
pipe length 200D. The forming of the Poiseuille profile at the
pipe end leads to a transition to turbulence in the free jet at a
distance of 10D. Laminar pipe flows were also used to create
laminar jets by many other authors.3,26,41 To some extent, the
work of Koller-Milojević and Schneider21 can also be related
to this method, although their “conventional nozzle” was quite
short.

While efficient for narrow jets and low Reynolds num-
bers, this method has a significant disadvantage when scaled
to wider jets. The velocity profile, which differs from the
Poiseuille profile by less than 1%, is formed in the pipe of
the diameter D at the length37 l = 0.065·D·Re. This explains
why only small-scale jets can be produced in this way; say, to
form a laminar jet with the diameter of 0.1 m at Re = 3000, the
pipe length of the order of 20 m would be required.

Another method was used in experiments devoted to the
transition to turbulence in coaxial jets by Navoznov et al.36

They used honeycombs made of thin tubes of variable lengths
[Fig. 1(b)] to form an internal round jet with a velocity
profile independent of the turbulence level. A metal grid
was installed at the outlet of the forming device, such that
the turbulence intensity downstream from the grid was less
than 1%. They obtained the laminar jet length of 20D for
Re = 1300 and 9D for Re = 2700 with the jet diameter
of 0.028 m. Therefore, this method of forming the velocity
profile with low turbulence intensity by honeycombs and a
covering grid is effective and could be scaled to wider jets;
however, the production of honeycombs of inconstant lengths
and the maintenance of the device are quite laborious. Note
that a similar technique, namely, a honeycomb covered by a
metal grid, was used in the experiments of Liang and Max-
worthy27 but with another goal, namely, to generate swirling
jets.

C. The goal of this study

As shown, the main impediments to the generation of
round laminar jets of sufficiently large diameters and length-
to-diameter ratios are the huge length of the pipe in the first
method and the complexity of the jet-forming device in the
second. In this study, we present a new, simple method for the
formation of free laminar jets with the diameter D = 0.12 m,
that is, by an order wider than is accessible for other methods.
The transition to turbulence occurs at a distance of 5.5D from
the orifice, while the size of the forming device is only ∼1.5D.
The device design is based on the studies of Navoznov et al.36

and Reshmin et al.,40 where a similar type of device was used
to study turbulent flows. Namely, it was experimentally found
that a short diffuser covered by a grid significantly reduces
total pressure loss in turbulent flows in suddenly expanding
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channels. However, no attempts to produce laminar jets were
made by those authors.

The structure of the paper is as follows. In Sec. II, we
describe the jet generation method and the experimental appa-
ratus used to conduct measurements. Section III is devoted to
the design of the jet-forming unit. Next, Sec. IV presents the
results of experimental studies, including the lengths of lam-
inar portions of jets obtained at various regimes. To explain
these results, the rest of the paper is devoted to the theoreti-
cal analysis of the flow. Section V is devoted to the detailed
numerical modeling of the steady flow in the jet-forming unit
and the link between the jet profile and the flow structure inside
the device. In Sec. VI, we conduct an inviscid instability anal-
ysis of jet profiles and explain the existence of the optimal
jet generation regime corresponding to the jet’s longest lami-
nar portion. Finally, in Sec. VII, we compare our results with
other studies in terms of laminar jet length and summarise this
study’s results.

II. EXPERIMENTAL METHODS AND CONDITIONS

The experimental apparatus consists of the air supply
device (pipeline), the forming device, and the measurement
system. The forming device’s picture and the scheme are
shown in Fig. 2. Air flows from the gasholder to the forming
device via a pipeline (1). Then it enters the forming device’s
first section through a short pipe. This section is a cylindrical
channel of 0.04 m in diameter, where the flow is smoothened
passing through a perforated plate (2) which also reduces
the spatial scale of turbulent fluctuations. After the plate, the
flow passes through a bushing with metal grids (3) of 0.05 m
in length which is located at a distance of 0.03 m down-
stream from the perforated plate which reduces turbulence
level. The second section of the forming device (short dif-
fuser) is located at a distance of 0.06 m downstream from
the bushing. At a length of 0.04 m, the flow expands to a
diameter of 0.12 m through the diffuser (4) from which the
jet flows to the atmosphere. For low incoming turbulence, the
diffuser wall shape and the grid package (5) at the diffuser out-
let provide low outcoming turbulence and the jet profile with
almost constant velocity at the central jet core of 0.05 m in
diameter.

FIG. 2. The photograph (a) and the scheme (b) of the forming device. The
pipeline from the gasholder (1), the perforated plate (2), the bushing with
metal grids (3), the short diffuser (4), and the grid package (5).

FIG. 3. The scheme of the measurement system (a) and the orientation of the
sensor in the flow (b). Probe (1), probe support (2), traversing mechanism (3),
jet (4), sensor: thin wire (5), and prongs (6).

Thermoanemometer DISA 56C01 CTA is used for the
velocity measurements. The signal is transferred to the
analogue-digital converter connected to a personal com-
puter. The velocity is measured by small-sized probes Dantec
Dynamics 55P11. The probe has a wire sensor mounted on
two straight needle-shaped prongs. The wire is 1.25 mm long
and 5 µm thick. The anemometer’s probe is mounted on the
probe support and then is placed into the flow with the wire
perpendicular and the prongs parallel to the flow (Fig. 3). The
probes are calibrated in a standard way. The traversing appara-
tus is used to move the probe in the jet cross sections so that the
velocity versus radial coordinate is measured. The disturbance
of the flow produced by the probe is negligible due to small
sensor size. The effect of the probe support on the upstream
flow field (where the sensor is located) is also minor due to the
position of the probe support.

The jet visualisation system is shown in Fig. 4. It consists
of laser KLM-532 (1) and video camera Bonito CL-400B (2).
Light-reflecting particles are generated at the aerosol generator
(3) and introduced to the flow through a hose (4). A segment of
the jet is illuminated by the laser light sheet (5). The image is
taken by the camera, whose optical axis is normal to the plane
of the laser light sheet.

The Particle Image Velocimetry (PIV) measurements are
obtained through the Polis PIV system, consisting of the same

FIG. 4. The scheme of the visualisation system. Laser (1), video camera (2),
aerosol generator (3), hose (4), laser light sheet (5), and jet (6).
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FIG. 5. Bushing without (a) and with (b) metal grids.

FIG. 6. Short diffuser without (a) and with the metal grid
package at the outlet (b) and the scheme of short diffuser
(c).

camera, aerosol generator, and impulse laser Beamtech Vlite-
Hi-100. The system provides the temporal resolution of up to
100 vector fields per second.

III. THE FORMING DEVICE
A. The inlet section

To form the laminar jet, it is necessary to suppress tur-
bulent fluctuations in the incoming flow. The first section
of the device is a cylindrical channel of 0.04 m in diameter
and 0.14 m in length. The perforated grid plate with 0.6 mm
diameter holes and a holes-to-plate area ratio of 0.8 is placed
in the cylindrical channel inlet. A cloth of dense texture is
installed before the perforated plate. The bushing of 0.05 m
in length with metal grids (Fig. 5) is placed at a distance of
0.03 m downstream from the perforated plate. The measure-
ments show that the resulting flow after the first section is
laminar and that the intensity of turbulent fluctuations is less
than 0.6%.

B. The outlet section

The outlet section of the forming device is a short dif-
fuser (Fig. 6). The outlet-to-inlet diameter ratio D2/D1 of the
diffuser is 3. Its channel length is equal to the inlet diameter.
The diffuser wall profile is shown in Fig. 7. The attached flow

FIG. 7. The profile of the diffuser wall; the z axis is directed upwind.

can exist in the expanding conical channel if the expansion
angle does not exceed 12◦–14◦.10 For larger angles, the flow
separates from the wall, and a considerable growth of turbu-
lent fluctuations is observed. To prevent separation from the
diffuser’s suddenly expanding channel, we add a package of
two metal grids (Fig. 2, 5) which consists of the brass grid
(wire diameter is 0.05 ± 0.004 mm; free area ratio is 34.4%)
and the stainless steel grid (wire diameter is 0.03 ± 0.004 mm;
free area ratio is 32.7%). The grids constrain the flow and
cause its expansion in the radial direction without significant
separation. The simultaneous action of the grid package and
certain wall shape provides no reverse flow in the diffuser,
and only a relatively small local laminar separation occurs for
some velocity regimes which is confirmed by the numerical
calculations presented in Sec. V.

IV. EXPERIMENTAL RESULTS

Measurements of the velocity profile along the diffuser
diameter in different directions show that the velocity dis-
tribution at the outlet section is approximately symmetric to
the channel axis and depends only on the radial coordinate r.
Figures 8 and 9 show mean velocity profiles and velocity

FIG. 8. Mean velocity profiles at a distance of 5 mm from the outlet section
(outlet package of two metal grids) of the diffuser. U is mean velocity and r
is the radial coordinate.
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FIG. 9. Turbulent velocity fluctuations at a distance of 5 mm from the orifice
(package of two metal grids) of the diffuser.

fluctuations, respectively, at a distance of 5 mm downstream
from the outlet section (i.e., outlet package of two metal grids)
of the diffuser. The results are shown for various Reynolds
numbers Re = ρUa3D/µ, where ρ = 1.2 kg/m3 is the air
density, Ua3 is the velocity averaged over the cross section,
D = 0.12 m is the outlet diameter of the diffuser, and µ = 1.79
× 10�5 Pa s is the dynamic viscosity of the air. The list of the
regimes studied is shown in Table I, where Uc is the velocity
at the jet axis.

During the first series of tests, the mean velocity and
velocity fluctuations are measured by a thermoanemometer
at the jet axis at different distances downstream from the
diffuser outlet with a step of 0.12 m. Measurements at the
fixed regime show that the velocity and intensity of turbulent
fluctuations at the jet axis remain constant at a distance of
several (1-6, depending on the regime) outlet diffuser diame-
ters and farther downstream start to change: the mean velocity
decreases and the turbulent fluctuations increase. Then the
region of the change was passed with a smaller step of 0.06 m.
Figure 10 shows the results of these tests for various velocity
regimes. It is seen that the longest laminar region at the jet
axis is obtained in the range of Re = 5680–9200. As the tran-
sition to turbulence usually starts near the jet boundary, where
the shear layer has the inflection point, measurements along

TABLE I. Maximum velocity Uc, average velocity Uav, and corresponding
Reynolds number of the studied jets.

Uc (m/s) Uav (m/s) Re

0.5 0.25 2 000
1.0 0.48 3 840
1.5 0.71 5 680
2.0 0.92 7 440
2.5 1.14 9 200
3.0 1.35 10 880
3.5 1.56 12 560

FIG. 10. Mean velocity U (a) and velocity fluctuations u′/U (b) at the jet axis.
z is the coordinate along the jet axis, z = 0 at the diffuser outlet.

the jet axis give a score from above of the fully laminar jet
length.

The second series of experiments is devoted to the
careful measurement of the laminar jet length at the same
regimes. The velocity and turbulent fluctuation profiles in
cross sections of the jet are measured with a step of one
diffuser outlet diameter D = 0.12 m along the jet axis. Obser-
vations of the visualized jet (such as shown in Fig. 15), PIV,
and hot-wire anemometer measurements show that the jet
stays laminar while the velocity fluctuations do not exceed
14%, which is why this level of fluctuation was taken as
a criterion of the jet laminarity. To illustrate this thresh-
old, Fig. 11 shows the level of velocity fluctuations (right
figures) for three jet states: laminar, transition (formation
of vortex rings is seen), and fully turbulent. It is seen that
for the laminar jet the velocity fluctuations do not exceed
1%–5% in the jet core and 14% in the shear layers, whereas
for other jet states they grow at least up to 25%–30%.
According to this criterion, the maximum distance from the
diffuser outlet at which the mean velocity profiles change
negligibly and velocity fluctuations are less than 14% is
determined for each regime. We call this distance the length
of the jet laminar region. Figure 12 shows the profiles of the
turbulent fluctuations measured by the thermoanemometer at
the maximum distance Llam, where the jet is laminar, and
Llam + D/2, where the start of transition is seen (turbulent
fluctuations increase and exceed 14%). Figure 13 shows the
mean velocity profiles at the same distances from the dif-
fuser outlet, where increasing deformation of the profile near
the jet boundary is seen. Based on the results of the second
series of tests, we conclude that the length of the jet laminar
region is maximum for Re = 7440–9200 and is equal to 5.5D
(Fig. 14).

Figure 9 shows that the initial turbulent fluctuations are
higher for the first three regimes compared with the other
regimes. Therefore, we conclude that the higher level of incom-
ing turbulence is responsible for the shorter laminar region for
these regimes comparing with Re = 7440 and 9200. The reason
for the shorter laminar region for Re ≥ 10 880 is the higher
growth rates of small perturbations, as will be discussed in
Sec. VI.

The third series of experiments is devoted to the visu-
alisation of the jet at different velocity regimes. The aerosol
generator and the visualisation method are described in Sec. II.
Figure 15 shows an example of the visualised jet with a
long laminar region at Re = 7240 (a) and the jet break-
ing down near the diffuser outlet (b). Visualisation results
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FIG. 11. Contours: Distributions of velocity magnitude (left) and velocity fluctuations (right) for the three stages of the jet evolution: laminar (a), transitional
(b), and fully turbulent (c), measured by PIV. Vectors: Flow velocity fluctuation.

confirm the jet laminarity at least up to the distances shown in
Fig. 14.

V. NUMERICAL MODELING OF THE FLOW
IN THE DIFFUSER

To analyze the flow downstream from the first (turbulence-
reducing) section of the jet-forming device, we have studied
the flow in its second section. The control volume method
implemented in Ansys CFX code is used. The flow is assumed
to be steady and laminar; hence, Navier-Stokes equations are
solved. The computational region consists of a portion of the
forming device (inlet channel, diffuser, and the grid package
at the diffuser outlet) and a portion of the ambient fluid.

A. Formulation of the problem

The flow in the forming device is axisymmetric, which
can be simulated by considering a 3-dimensional small-angle
sector with symmetry conditions assigned at the sector side

planes. This quasi-3D approach eliminates any difficulties
associated with the singularity of the cylindrical coordinate
system at the centerline. The computational region is a 5◦,
1-element thick sector, which is split into three domains
(Fig. 16): the first domain (shown in dark gray) corresponds to
the flow in the tube and diffuser, the second domain (shown in
light gray) corresponds to the grid package at the diffuser outlet
that is simulated as porous medium, and the third domain rep-
resents the ambient fluid. The first and third domains are fluid
domains, where the flow is governed by Navier-Stokes equa-
tions. The air is considered as incompressible fluid with the
dynamic viscosity 1.79 × 10�5 Pa s. The second domain is an
isotropic porous medium, where additional momentum source
term ~SM is added to the momentum equation. The momentum
loss is formulated using permeability coefficient Kperm and
resistance loss coefficient K loss as shown by the formula

~SM = −
µ

Kperm

~U − Kloss
ρ

2
|~U |~U,
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FIG. 12. Profiles of turbulent fluctuations at the distance
Llam and Llam + D/2 (filled and empty marker symbols,
respectively). Dashed lines show the threshold u′/Uc =
14%.

where µ and ρ are the dynamic viscosity and density of the
fluid, respectively, and ~U is the fluid velocity. The values of per-
meability and resistance loss coefficients are chosen to provide
the pressure drop in the porous domain equal to experimen-
tal data for the grid package obtained in a special series of
experiments which is well approximated by the formula

4p = 4.3U2 + 35.7U, (2)

where 4p (Pa) is the experimental pressure drop and U (m/s)
is the flow velocity. Values Kperm = 5 × 10�11 m2 and K loss

= 71 696 m�1 for the porous domain thickness 0.1 mm are set
in the model to fit the experimental pressure loss (2).

The boundary conditions (Fig. 16) are the following:

• at the inlet of the computational region, the magnitude
of the normal velocity is specified;

• at the wall of the tube and the diffuser, the no-slip
boundary condition ~u = 0 is applied;

• conservative mass and momentum fluxes are assigned
for both sides of interfaces between the diffuser and
porous domains (interface 1) and between porous and
external domains (interface 2);

• pressure equal to 105 Pa and zero flow direction
gradient are specified at external boundaries; and

• static pressure of 105 Pa is specified over the
outlet.

B. Numerical convergence and validation
of the model

To test the numerical convergence, calculations under the
same physical parameters and various mesh sizes of the cal-
culation region have been performed. Mesh sizes are approxi-
mately 182 000 (Fig. 17) and 428 000 control volumes and the
maximum of residuals in spatial iterations is 4.4 × 10�5. The
solid line (182 000) and the dashed line (428 000) in Fig. 18
demonstrate good agreement between the resulting velocity
profiles downstream from the diffuser. Therefore, we conclude
that the convergence in mesh size is achieved. The comparison
between the velocity profiles obtained with a mesh of 428 000
volumes with maximum residuals of 4.4 × 10�5 (dashed line
in Fig. 18) and 4.4 × 10�4 (gray criss-crosses in Fig. 18) shows
that the profiles coincide so that the convergence in residuals
is also achieved.
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FIG. 13. Mean velocity profiles at the distance Llam
and Llam + D/2 (filled and empty marker symbols,
respectively).

Figure 19 shows the close agreement of calculated veloc-
ity profiles at a distance of 5 mm from the porous domain
(solid lines) with experimental velocity profiles, measured at
the same location (points) in a special series of tests with a
higher spatial resolution of velocity measurements.

FIG. 14. Length Llam of the jet laminar region versus the Reynolds number
Re.

C. Results of calculations

The flow streamlines in the diffuser are shown in Fig. 20.
Because of the pressure drop at the grid package (simulated
as the porous medium), the flow is slowed down and radially
expanded before the grid. The flow is attached to the wall for
the first regime (Re = 2000), whereas for regimes Re = 9200 and
Re = 12 560, there are small local separations. The separation
bubble for the regime Re = 9200 is shown in more detail in
Fig. 21. Wall shear stress versus the longitudinal coordinate
x along the tube and diffuser wall is shown in Fig. 22 for
all three regimes. The dashed line in Fig. 22 confirms that
the flow is attached for the first regime, while for the second
and the third regimes (dashed-dotted and solid lines), the wall
shear stress is negative at a small segment of the diffuser wall
which corresponds to the local separation region. For higher
velocity, the separation bubble is longer (its length along the x
axis is 0.0195 and 0.0209 m for Re = 9200 and Re = 12 560,
respectively).

The appearance of the separation region inside the dif-
fuser explains the change in the outcoming velocity profile.
When the flow is attached, the velocity profile is convex in the
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FIG. 15. Visualisation of free jets. The jet with a long laminar region at
Re = 7240 (a) and a short laminar region at Re = 1450 (b).

larger part of the jet, and a single inflection point is located
near the outer jet radius [Fig. 19(a)]. When the local sepa-
ration occurs, the separation bubble decreases the effective
cross section of the diffuser and impedes the radial flow into
a thin gap between the diffuser wall and the grid package.
Namely, the mass flow rate through the plane AB rated to
the total flow rate (Fig. 23) is 0.534, 0.467, and 0.453 for the
regimes Re = 2000, 9200, and 12 560, respectively. As the
relative flow rate passing through the central core of the jet
increases while that through the outer region decreases, this

yields the occurrence of two more inflection points in the out-
coming velocity profile near r = 0.03 and 0.049 m [Figs. 19(b)
and 19(c)]. For higher flow speed, the separation bubble is
longer which results in a more pronounced dip in the velocity
profile.

The steady flow analysis connects the flow structure in the
diffuser with the outcoming velocity profile. Next, to establish
the connection between the velocity profile and the length of
the laminar region, in Sec. VI, we conduct a stability analysis
of the jets.

VI. INSTABILITY PROPERTIES OF JETS

To understand the difference in laminar region lengths
obtained at various regimes, we performed an analysis of the
hydrodynamic stability of jets. As growing perturbations in
jets are related to inviscid instability, and taking into account
quite large Reynolds numbers Re∼ 104 in our experiments and
almost no spreading of the jet along its laminar region, we ana-
lyzed the temporal inviscid instability within the framework
of the Rayleigh equation.

Steady velocity profiles at various regimes were calculated
with the numerical model described and validated in Sec. V. In
the stability analysis, we neglected their development down-
stream from the diffuser due to large Reynolds numbers, i.e.,
the velocity profiles were assumed constant along the jet.
After that, each profile was non-dimensionalised, taking the jet
radius and maximum velocity Uc as length and velocity scales.
Then in non-dimensional variables, the jet velocity U(r) varies
from 1 at r = 0 to 0 at r = 1 and U(r) = 0 for r > 1. To distinguish
velocity profiles calculated for different regimes, we will use
the Reynolds number as the profile’s parameter. The result-
ing velocity profiles are shown in Fig. 24. In this section, the
instability analysis is conducted in dimensionless form, and in
Subsection VI E, the perturbation growth rates are scaled to
dimensional form in the context of the laminar region length
analysis.

A. Rayleigh equation and boundary conditions

After the linearisation of Euler equations around steady
jet flow with a given velocity profile U(r), Rayleigh38 (see also

FIG. 16. Computational domain. The
bottom line shows the axis of the form-
ing device.
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FIG. 17. Computational mesh.

the work of Batchelor and Gill4) obtained a single equation for
the radial velocity perturbation for round jets in a cylindrical
coordinate system,

(U(r) − c)
d
dr

(
r

n2 + α2r2

d(rG(r))
dr

)
− (U(r) − c) G(r) − rG(r)

d
dr

(
rU ′(r)

n2 + α2r2

)
= 0, (3)

where G(r) is the amplitude of the radial velocity fluctuation,

ur = iG(r)ei(αx+nϕ−ωt),

α ∈ R and n ∈ Z are axial and azimuthal wave numbers, ω is
the frequency, and c = ω/α is the phase speed.

Perturbation G(r) should satisfy two boundary conditions.
First, at r = ∞, the radiation condition must be satisfied.
We will assume that for r > 1, the fluid is at rest; that is,
U(r) = 0. With zero steady velocity, (3) has two linearly inde-
pendent solutions, I ′n(αr) and K ′n(αr), which are the derivatives
with respect to r of modified Bessel functions of the first and
second kinds. As only K ′n satisfies the radiation condition, we
have

G(r) = C
dKn(αr)

dr
, r ≥ 1. (4)

Then we may transfer the radiation condition from infinity to
r = 1 by matching (4) with the solution at r < 1 by putting

G′(r)
G(r)

=
K ′′n (αr)
K ′n(αr)

, r = 1. (5)

The second boundary condition at r = 0 is not as obvious
and was discussed in detail by Batchelor and Gill.4 It can be
summarised as

G(0) = 0, n = 0,

G′(0) = 0, n = 1,

G(r) ∼ rn−1, r → 0, n > 1 .

(6)

For each α ∈ R, n ∈ Z the boundary-value problem for
the Rayleigh equation (3), (5), and (6) defines an eigenvalue
problem to find c(α, n) ∈ C.

B. Numerical method

The eigenvalue problem (3), (5), and (6) was solved
numerically. The boundary-value problem was first reduced
to an initial-value problem with initial conditions specified at
r = ε = 10�5 (to avoid numerical singularity of the coordinate
system at r = 0),

G(ε) = ε, G′(ε) = 1, n = 0,

G(ε) = 1, G′(ε) = ε, n = 1,

G(ε) = Cεn−1, G′(ε) = C(n − 1)εn−2, n > 1,

(7)

where a constant C was selected to obtain the eigenmode
amplitude of the order of 1. With these initial conditions, the
Rayleigh equation was solved by the Runge-Kutta method and
the value

F(α, n, c) = G′(1)K ′n(α) − G(1)K ′′n (α)

was calculated. Based on the convergence study, N = 300
points per segment [0; 1] were used in the Runge-Kutta
method. For each α and n, the root c(α, n) of the equation

F(α, n, c) = 0 (8)

was found by the secant method (with recalculation of the
Rayleigh equation solution at each iteration).

FIG. 18. Convergence in mesh size and in maximum residual. Velocity pro-
files for mesh sizes 182 000 volumes and maximum residual 4.4 × 10�5 (solid
line), 428 000 volumes and maximum residual 4.4 × 10�5 (dashed line), and
428 000 volumes and maximum residual 4.4 × 10�4 (gray criss-crosses).
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FIG. 19. Comparison of experimental (points) and calculated (solid lines) jet velocity profiles at a distance of 5 mm from the diffuser outlet for the regimes
Re = 2000 (a), 9200 (b), and 12 560 (c).

FIG. 20. Streamlines in the diffuser for the regimes Re = 2000 (a), 9200 (b), and 12 560 (c).

For every n, calculations of c(α) have been conducted
independently. First, the neutral mode (αs, cs) was found. Its
eigenvalue is cs = U(rs), where rs is a root of the equation4,38

Q′(r) = 0, Q(r) =
rU ′

n2 + α2r2
. (9)

FIG. 21. Local separation in the diffuser for Re = 9200.

Since this equation is a generalisation of an inflection-point
condition U ′′(r) = 0 for planar flows to axisymmetric flows,
we will call its roots rs generalised inflection points. For each
branch of real roots cs(α) of (9),α =αs was found to satisfy (8).
If such αs exists, that is, a neutral mode is found, then the point
cs is the origin of the curve c(α) in the complex c-plane lying
in a Howard semicircle,11,16 which gives a branch of growing
perturbations. By the step-by-step change of α, starting from

FIG. 22. Wall shear stress (x-component) versus the coordinate x along the
jet axis for Re = 2000 (dashed line), 9200 (dashed-dotted line), and 12 560
(solid line).
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FIG. 23. Line AB for the calculation of relative mass flow.

FIG. 24. Dimensionless steady velocity profiles U(r) obtained for Re = 2000,
3840, 5680, 9200, 12 560.

αs, eigenvalues c(α), Im c > 0, were calculated until either the
eigenvalue again becomes real or α = 0.

The most simple case of finding neutral perturbations is
n = 0 because Eq. (9) is reduced to

(U ′/r)′ = 0, (10)

and locations of generalised inflection points do not depend
on α and are governed only by the velocity profile. Figure 25
shows its roots versus Re. For 2000 ≤ Re ≤ 12 560, there are
three roots; that is, three neutral perturbations exist. The first,
denoted “s1,” is governed by the generalised inflection point

FIG. 25. Generalised inflection points rs [roots of (10)] (a) and phase speed
of neutral perturbations cs = U(rs) (b) versus Re for n = 0.

FIG. 26. Branches c(α) of growing perturbations and a Howard semicircle
in the complex c-plane for n = 0, 1. Results for Re = 12 560 (solid line), 9200
(long dashed line), 5680 (short dashed line), 3840 (dashed-dotted line), 2000
(dotted). For n = 1, the thin gray line represents the results for Re = Resaddle.

of velocity profiles which is the closest to the outer jet radius.
Two other roots, denoted “s2” and “s3,” are located closer to
the jet centre, and for Re slightly below 2000, they collapse
and disappear.

FIG. 27. Branches c(α) of growing perturbations and a Howard semicircle in
the complex c-plane for n = 2, 10. Results for Re = 12 560 (solid line), 9200
(long dashed line), 5680 (short dashed line), 3840 (dashed-dotted line), 2000
(dotted).
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To obtain solutions that are limit of viscous solutions at
vanishing viscosity, Lin’s rule11,28 must be enforced; that is,
an integration of the Rayleigh equation must be conducted
above the critical point rc (for U ′ < 0). For growing perturba-
tions, Im c > 0, the critical point lies in the bottom half-plane,
Im rc < 0, which means that the integration along the real
segment [0; 1] is in accordance with Lin’s rule. Damped pertur-
bations need integration in the complex r-plane along a contour
passing above the critical point; however, such perturbations
do not affect the jet stability and are not considered in this
study.

To check the validity of the computational code, a family
of ‘top-hat’ profiles representing a smoothened axisymmetric
vortex sheet was studied first. For the decreasing length of the
segment, where the flow speed reduces from the core speed
to zero, calculated eigenvalues c(α) tend to the closed-form
solution of the eigenvalue problem for the vortex sheet.4

Hence, the code is validated and can be used for stability
calculations.

C. Results

We will start the observation of results with the veloc-
ity profile at Re = 12 560. For n = 0 and 1, there exist three
neutral modes c = cs and two branches of growing pertur-
bations c(α), as shown in Fig. 26. One branch connects two
neutral eigenvalues cs1 and cs2 corresponding to two gener-
alised inflection points farthest from the centre; the segment
of wavenumbers [αs1; αs2] corresponds to this branch. The
other branch connects the neutral eigenvalue cs3 correspond-
ing to the generalised inflection point closest to the jet centre,
with c = 1 (n = 0) or c = 0.468 + 0.203i (n = 1); the latter
values are reached at α = 0 so that the range of wavenum-
bers corresponding to this branch is [0; αs3]. For 2 ≤ n
≤ nmax = 74, only one branch c(α) exists for α ∈ [0; αs1]
which ends at a point c(0) in the upper half-plane (Fig. 27). For
n > nmax, no neutral or growing eigenmodes exist. Figure 28
shows dimensionless growth rates Im ω(α). As shown, the
maximum growth rate maxα Imω = 0.734 is reached at the first

FIG. 28. Growth rates of growing perturbations Imω(α)
for n = 0, 1, 2, 10. Results for Re = 12 560 (solid line),
9200 (long dashed line), 5680 (short dashed line), 3840
(dashed-dotted line), 2000 (dotted). For n = 1, the gray
lines represent the results for Re = Resaddle.
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TABLE II. Maximum dimensionless growth rates maxα Im ω for different
velocity profiles.

Re n = 0 n = 1 n = 2 n = 10 n = 20

2 000 0.961 0.958 0.949 0.710 0.295
3 840 0.591 0.588 0.578 0.335 0.027
5 680 0.509 0.507 0.501 0.352 0.110
9 200 0.598 0.597 0.593 0.529 0.380
12 560 0.734 0.733 0.732 0.691 0.570

branch and is mostly governed by the point rs1. For increasing
n, the maximum growth rate slowly decreases to 0, as shown in
Table II.

A similar behaviour is observed for other profiles. In all
cases, for 2 ≤ n ≤ nmax, only one branch of growing perturba-
tions associated with generalised inflection point rs1 exists
(Figs. 27 and 28), and no growing perturbation exists for
n > nmax. The value of nmax varies: nmax = 50, 27, 22, 31
for Re = 9200, 5680, 3840, 2000, respectively.

For n = 1, an interesting phenomenon of the saddle point
of c(α) is found at Re = Resaddle = 4892 (Fig. 26). While for
Re > Resaddle, the branch linking the two neutral perturbations
connects cs1 and cs2, for Re<Resaddle, it switches to connecting
cs2 and cs3. At a decreasing Re, the values of cs2 and cs3

become closer to each other and collapse at Re = 2932. At a
lower Re, this branch of perturbations becomes damped for
all α.

For n = 0, no such collapse occurs at 2000 ≤ Re ≤ 12 560,
and the branches c(α) do not change their topology.

Figure 29 shows the examples of eigenmodes correspond-
ing to the maximum growth rate at Re = 9200. For n = 0 and
the branch connecting cs1 and cs2 (shown by thin curves), the
maximum growth rate is achieved at α ≈ 21.2. This mode is
concentrated around the point rs1, where the maximum ampli-
tude is located and significant phase change occurs. For the
branch connecting cs3 and c = 1 (shown by bold curves), the
fastest growing eigenmode corresponds to α ≈ 2.1. The maxi-
mum amplitude and the most of the phase change occur in the
internal region of the jet, near the point rs3. Note that accord-
ing to Fig. 28, the maximum growth rate of the first branch
is essentially larger than of the second; hence, it is natural to
expect that the first branch triggers the transition to turbulence.
For n = 10, only the first branch of eigenmodes exists. Maxi-
mum growth rate corresponds to α ≈ 22.6, and the amplitude
and phase distributions are similar to those at n = 0.

Table II shows dimensionless maximum growth rates. In
all profiles considered, the most rapidly growing perturbation
is the axisymmetric mode (n = 0); however, growth rates for
helical perturbation with small n are very close to those at
n = 0. It is seen that among various velocity profiles, the growth
rate reaches a maximum at Re = 2000, decreases as the Re
increases until Re = 5680, and then increases.

D. Experimental validation of theoretical results

Several earlier studies (e.g., by Cohen and Wygnanski7)
have clearly shown that the initial growth of perturbations
in jets follows the inviscid linear instability theory and the
distance to the transition depends on corresponding linear

FIG. 29. Amplitude [(a) and (c)] and phase [(b) and (d)] of the fastest growing
eigenmodes for n = 0 [(a) and (b)] and n = 10 [(c) and (d)] at Re = 9200.

growth rates. However, to validate our instability calculations,
we performed a limited amount of additional measurements
of jet fluctuations in the transition region. For the regime
Re = 3840, we measured samples of velocity fluctuations at
the distances 2D and 4D downstream from the orifice. For
each sample, 3 s in length, the spectrum of velocity fluctua-
tions was calculated in several points. Figures 30(a) and 30(b)

FIG. 30. Spectra of the flow velocity fluctuations at the distance L = 2D [(a)
and (b)] and 4D [(c) and (d)] from the orifice. The probe is located near the
outer jet radius [(a) and (c)] and near the jet centre [(b) and (d)]. Regime
Re = 3840.
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TABLE III. Dimensional physical frequencies Ω = ω × (2Uc/D)/(2π) (Hz)
of the fastest growing perturbations.

Re Ω1 Ωmax Ω2

2 000 2.31 3.58 5.44
3 840 3.25 4.99 7.00
5 680 4.40 6.54 8.92
9 200 10.48 12.53 14.50
12 560 10.27 18.71 28.81

FIG. 31. Spectra of the flow velocity fluctuations at the distance L = 4.5D
from the orifice. Various probe locations inside the jet core are shown by
colours. Regime Re = 5680.

show the results for a point near the jet boundary (where the
generalised inflection point s1 is located) and in the central
core for the axial distance 2D, where the flow is laminar. In all
spatial locations, the dominant frequency is 4.6 Hz.

To compare these results with the instability calculations,
we calculated the frequency ωmax corresponding to the fastest
growing wave (Fig. 28) and the frequency range ω1 < ω < ω2

of perturbations with Im ω ≥ 0.8 max Im ω, that is, those
growing not slower than 80% of the fastest growing wave.
The results are shown in Table III in dimensional form. As
shown, the experimental dominant frequency is quite close
to the theoretical frequency of the most growing perturbation
Ωmax (8% error) and is certainly in the range Ω1 < Ω < Ω2.

Figures 30(c) and 30(d) show spectra of velocity fluctu-
ations in the same spatial locations of the jet cross section
but farther downstream from the orifice, namely, at the dis-
tance 4D. It is seen that the transition to turbulence has already
started; fluctuations near the outer jet radius do not have any
dominant frequency. On the other hand, in the jet centre,
where the amplitude of fluctuations is substantially lower, a
frequency of 4.9 Hz that is close to dominant at the distance
2D is present. However, the growth of other frequencies is also
clearly seen which signifies that the nonlinear transformation
of the perturbation has started in the jet centre as well.

To verify the trend of the frequency increase of the fastest
growing perturbation with the flow speed increase, measure-
ments at Re = 5680 are also conducted. Figure 31 shows that
the dominant frequency of velocity fluctuations in the jet core
is 6.0 ± 0.5 Hz which is in accordance with theoretical data
shown in Table III.

To measure the convective speed of perturbations, the
flow in the transition region was visualised through particle
image velocimetry at the regime Re = 2759. Figure 32 shows
snapshots of the axial velocity and vorticity distributions by
contours and velocity perturbations by vectors at the distance
L/D ≈ 3.5 from the orifice. Coherent structures in the flow
are clearly seen. Their convective speed is cexp = 0.189 m/s
which is in reasonable agreement with the calculated phase
speed of the fastest growing wave ccalc = 0.156 m/s, given that
the coherent structures in Fig. 32 are in their nonlinear stage
of evolution, and the phase speed, as well as wave length and
frequency, can change compared with the linear stage. On the
other hand, calculated growth rate Imω of the wave having the
phase speed cexp is equal to 0.8 max Im ω; that is, the theory
also predicts its significant growth.

In Figs. 30 and 32, the maximum amplitude of the flow
fluctuation is located near the outer jet boundary, where the
generalised inflection point s1 is located. The linear theory
(Fig. 29) shows that eigenmodes corresponding to the fastest
growing perturbations also have a sharp peak near s1; that
is, not only the frequency and convective speed but also
the observed spatial structure of the jet fluctuations are in
agreement with the theory.

Thus, we conclude that the transition to turbulence is
triggered by the fastest linearly growing perturbations which

FIG. 32. Flow visualisation in the transition region by PIV. Contours: Axial velocity (a) and vorticity (b). Vectors: Flow velocity fluctuation. Regime Re = 2759.
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TABLE IV. Maximum dimensional growth rates maxα Imω × (2Uc/D) (Hz)
for different velocity profiles.

Re n = 0 n = 1 n = 2 n = 10 n = 20

2 000 8.008 7.983 7.908 5.917 2.458
3 840 9.850 9.800 9.633 5.583 0.450
5 680 12.725 12.675 12.525 8.800 2.750
9 200 24.917 24.875 24.708 22.042 15.833
12 560 42.817 42.758 42.700 40.308 33.250

validates the use of linear instability analysis for the estimate
of the distance to transition.

E. Length of laminar portion of the jet

To explain the observed length of the laminar portion of
the jet, consider growth rates of the fastest growing wave at dif-
ferent regimes. In dimensionless form, the maximum growth
rate is reached at Re = 2000 (Table II). However, when scaled
back to dimensional values (Table IV), the maximum growth
rate monotonically increases when Re increases.

Based on these results, we can now explain the existence
of the optimal regime corresponding to the maximal length
of the laminar region of the jet (Fig. 14). The transition to
turbulence occurs because of growing perturbations, whose
amplitude depends on, first, initial amplitudes and, second,
growth rates. For small Re, we have relatively high levels of
incoming turbulence (Fig. 9), and initial amplitudes of per-
turbations are therefore large which yields turbulisation at a
relatively short distance. When the flow speed increases, the
turbulence level drops (Fig. 9), and the laminar region length
increases. However, at larger Re, growth rates become larger
and larger so that despite low initial amplitudes, the pertur-
bations significantly grow closer to the diffuser which again
yields a shorter laminar region. By improving the balance
between initial amplitudes and growth rates, it is possible to
further improve the optimal regime and increase the laminar
region length even more than obtained in this study.

VII. CONCLUSIONS

In this paper, we have demonstrated the formation of
laminar jets with a diameter of D = 0.12 m at Reynolds

numbers ∼10 000 with a novel compact device of the size
∼1.5D. Experimental results confirm the laminarity of the flow
up to the distance of 5.5D downstream from the forming unit
for the optimal velocity regime which is not accessible for
other known methods of laminar jet formation.

To explain the existence of the optimal regime which cor-
responds to the longest laminar region, a steady flow analysis in
the forming unit has been conducted. The correlation between
the flow structure and outcoming velocity profile has been
established, and the appearance of two additional inflection
points in the jet profile at high-speed regimes is explained by
the appearance of the local laminar separation bubble inside
of the diffuser. To connect the velocity profile with the length
of the laminar region, an inviscid stability analysis of the jet
has been conducted and verified by experiments. It is shown
that the laminar region length depends on the balance between
the initial turbulence level and the growth rates of perturba-
tions. In the experiments, for less-than-optimal flow velocities,
the turbulence level increased, while for higher velocities, the
perturbation growth rates increased, which both resulted in
shorter laminar regions. Improving this balance, either by fur-
ther decreasing the incoming turbulence level or by changing
growth rates through modifying the velocity profile (by chang-
ing the diffuser wall shape and grid properties), gives the
potential to obtain longer laminar jets with the same design
of the jet-forming unit.

Figure 33 shows the comparison of the laminar jet lengths
obtained by different authors and in this study. As shown, there
are no previously available results for Re > 6700; that is, the
transition at large Re in other studies occurred almost immedi-
ately. The dashed curve shows the envelope of results of other
authors, given by the expression

Llam/D = 1.3 × 107Re−1.6.

It is clearly seen that laminar jets obtained in this study per-
fectly lie within this envelope, but correspond to essentially
larger Reynolds numbers that were achieved previously.

More important is that all the “best” results for
Re ≤ 6700 available in the literature so far21,23,26,41 are
obtained by the “pipe” method and use a very small orifice
diameter D ∼ 1 mm or less, with the exception of those of
Kozlov et al.,23 who used the pipe of D = 20 mm. Generally,
the organisation of the pipe flow can be improved to obtain a

FIG. 33. Comparison of the lengths of
the jet laminar portion obtained by
different authors5,13,15,21,23,26,31,36,39,41

and in the present study. The Reynolds
number is based on the orifice diameter
and average velocity.



043603-17 Zayko et al. Phys. Fluids 30, 043603 (2018)

Poiseuille flow at larger Re; however, as argued in Sec. I B,
this method cannot be scaled to wider jets in real applications,
as the pipe length would be huge. In particular, it is almost
impossible to create a laminar jet of D = 120 mm, similar to
the one investigated in this study, with the use of the pipe flow.

Further development of the proposed method of laminar
jets formation is important for both fundamental and applied
studies. From a fundamental point of view, a laminar jet of
such a large diameter and length can be used for experimen-
tal investigations of perturbation growth and the development
of turbulence in free jets of various velocity profiles in “natu-
ral” conditions and with external excitation. To this day, very
limited data are available on this matter, primarily because of
the impossibility of creating laminar jets with large diameters
(∼0.1 m) and sufficient lengths and the difficulties of carefully
measuring small-scale jets.

With respect to possible applications, the technology pre-
sented in this paper can be used to create air curtains for the
protection of objects in various technological processes and
medicine through the formation of laminar jets of clean air or
other gases which are not mixed with the ambient medium.
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