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Abstract. Instability of elastic tubes with flowing fluid has been studied in many papers 
theoretically and experimentally in the context of biological applications. Up to the present 
day, only Newtonian fluid flowing in collapsible tubes has been studied. However, there are 
circumstances when blood, gall, and other biological fluids have essentially  
non-Newtonian properties. An important feature of the biological fluids motions in elastic 
vessels is the possibility of an oscillatory flow. Several mechanisms are possible 
for the appearance of such flow conditions. When the pressure inside of the tube is 
substantially lower than external pressure, the tube loses stability that yields 
the appearance of oscillations. Oscillations can also start due to non-existence 
of the steady state of the tube conveying fluid. In this paper, existence and uniqueness 
of axisymmetric states of collapsible tube conveying power law fluids have been 
theoretically studied. The qualitative analytical investigation of the equations of the motion 
has been conducted for the stationary state of the tube. As a result, the stationary state for 
the motion of an inviscid fluid with a given velocity profile always exists for short tubes and 
for arbitrarily long tubes under certain conditions. However, when viscosity is taken into 
account, the tube can only have a finite length, which leads to the appearance 
of non-stationary motion, as the only possible. Moreover, the state of tube satisfying 
the boundary conditions can be non-unique depending on the Reynolds number 
and certain additional conditions. 

Key words: one-dimensional models, stationary state, ununiqueness, elastic tubes, power 
law fluids, occillation. 

INTRODUCTION 

It is known that changes in the geometry of blood vessels, bile ducts and other biological 

vessels, such as compressions or kinks, can lead to qualitative changes in the flow of a 

biological fluid, yielding disfunctions of the human or animal bodies. This kind of tube 

oscillation affects the flow limitation and the pressure drop. In this connection, a great interest 

had been shown to the oscillation of elastic tubes and their biological application  

[16, 18, 27, 28]. 

The simplest theoretical one-dimensional models were first used to analyze 

the stability of elastic tubes in [16, 34]. Each tube is characterized by the correspondence 

of the cross-sectional area and the transmural pressure (the difference between internal 

and external pressures). Initially, when the transmural pressure 

is negative and the flow velocity is large, the tube loses stability, collapses, and its resistance 

increases. In turn, this leads to the decrease of the flow rate and the increase of the transmural 
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pressure. Then, the tube puffs out, the flow speed increases and the transmural pressure again 

drops, closing the cycle of oscillations. During each oscillation cycle, the deformation 

of the tube is not axisymmetric. Besides, the flow inside is quite complex, the separation 

of the flow from the surface of the tube exists during the part of the oscillation period. 

The stationary flow of an inviscid fluid in an elastic tube was investigated in [32] based 

on a one-dimensional model. It was proved that there are regions in the parameter space where 

such a flow does not exist, and if it exists, then in the general case it is not unique. The same 

problem was solved in [15] with the flow energy loss due to separation from the wall taken into 

account at the exit from the constricted segment. It turned out that solution always exists in such 

formulation of the problem, although the non-uniqueness of the solution remains in the general 

case. The results of the paper have a qualitative agreement 

with the experiment, but the authors of [15] pay attention to the importance of including 

viscosity of the fluid in the model not only in the separation region but throughout of the flow. 

Limitations of existing one-dimensional models and their improvements based on 

two-dimensional models are considered in [28]. A significant development of one-dimensional 

models and their qualitative agreement with the three-dimensional model is demonstrated in 

[40]. A lot of papers are devoted to analytical and numerical calculations of fluid flow in the 

elastic tube based on a two-dimensional model [21, 23, 24]. 

Despite this, the modelling of blood flow has been developed using one-dimensional 

models in the biomechanics during the last twenty years [1–3, 8, 9, 11, 14, 17, 30, 31, 36, 38, 

39], and also simultaneous using of one-dimensional and three-dimensional models [6, 7]. The 

authors of [1, 2] consider the calculation technique and structure of software 

for numerical modelling of the hemodynamics of the cardiovascular system and the study 

of blood circulation in the body as a whole under the influence of periodic heartbeat. 

One-dimensional models of blood flow and pressure wave propagation in the arterial system 

are considered in [11], which are alternatives to more complex three-dimensional models. These 

models are used to study the effect of geometric and mechanical arterial modification on the 

pulsed wave, for example, due to a stenosis or a prosthesis. A review can be found of one-

dimensional models for modelling the network of blood vessels in [31] and also various models 

that quantitatively correctly describe the pulse wave propagation are given. 

On the other hand, investigations of elastic tubes have been considered only for 

Newtonian (linearly viscous) fluids. Although, it is known that biological fluids such as blood 

[4, 20] or bile [20] may have non-Newtonian properties under certain conditions. The blood 

parameters of the cardiac cycle given in [37] are equivalent to the index of the power law fluids 

1/8n   in the rheological law. Also, the influence of pseudoplastic properties 

on the velocity distribution in large arteries is noted in paper [13]. 

In all studies, where the modelling of the vascular network is based on 

an one-dimensional statement of a problem [31], an unsteady calculation has to start with some 

steady state, which is the solution of the corresponding boundary value problem for an ordinary 

differential equation. In the present paper, it is proved that this state is in general not unique. In 

addition to the regular state of the inflated vessel corresponding to positive transmural pressure, 

there are a number of states in which the vessel has one or more compressions. In consequences 

of the calculation of the unsteady problem, in general, different results can be obtained 

depending on the choice of the initial state, only one of which is physically correct. Thus, 

additional control of the solution is necessary when the calculation of hemodynamic problems 

is conducted, which was not previously studied in the literature. 

In this paper, we consider the axisymmetric steady state of an elastic tube conveying 

power law fluids based on the one-dimensional model. The tube model takes into account its 

radial stiffness and longitudinal tension. A qualitative analytical study of the equation 

describing such state is conducted. In general, the method of investigation is similar to 
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[15, 32], but as distinct from them, we take into account the viscosity of the fluid, 

non-Newtonian rheology of the fluid and corresponding laminar velocity profile in the tube. 

The conditions for the existence of a stationary state are derived. It is proved that 

in the general case such a state is not unique and its possible types are investigated, as 

in the papers [15, 32]. As an example, stationary blood flows in a human vascular system 

are considered. 

1. FORMULATION OF THE PROBLEM 

1.1. Equations of motion 

Consider a cylindrical tube of length L with elastic walls and non-Newtonian fluid 

flowing inside (Fig. 1).The flow and the tube interact with each other through to the equality of 

normal stress at the wall and matching of the flow region with the shape of the tube. 

The longitudinal motion of the tube wall is neglected. Let us introduce cylindrical coordinate 

system with z  axis directed along the tube, where the tube occupies the domain [0; ]z L . The 

flow is assumed to be axisymmetric. 

We assume that the tube motion is so that each cross-section ( , )S z t  stays circular, 

and the tube points move only in a radial direction. Then, the tube geometry is defined by its 

radius ( , )R z t  in the point 𝑧 at time t .  

Taking tube inertia and longitudinal tension of the tube wall into account, the motion of 

the tube wall is written as: 
2 2

0 2 2
( ) , 

R R
R R N P m

z t

 
    

 
 (1) 

where 
2 2

0(1 )

Eh

R
 


 is the radial stiffness of the tube, m is the wall surface density, N h  

is longitudinal tension, 0R  is undeformed tube radius, E  and   are the Young's modulus and 

the Poisson’s ratio, h  is the tube wall thickness,   is the normal stress, P  is the tube tension 

stress. 

The fluid rheology obeys the power law: 
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where 
ij  is the viscous stress tensor, 

ije  is the strain velocity tensor. 

This law (2) is a generalisation to a three-dimensional case of the pure shear 

relationship: 

1
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System of equations for the incompressible fluid motion free from body forces 

in an arbitrary coordinate system is written as: 

 div 0,

1 1
,   1, 2,3.
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v
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p i
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 (3) 

The no-slip condition is assigned on the surface of the tube. 
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1.2. One-dimensional equation describing the steady state 

Consider static state of a tube conveying fluid. Let, the flow rate ( )Q Q z  and radius

( )R R z  does not depend on t . Then, / 0Q z    according to the mass conservation, 

i.e. 0Q Q , where 0Q
 
is arbitrarily specified flow rate.  

Considering the parameter / ~ / ~r zv v R L 
 
to be, we will assume that the change 

of the radius of the tube along the axis is sufficiently slow, so that a Poiseuille velocity profile 

is formed in each cross-section [22] (Fig. 2): 

 
( 1)/

0

2

  1 3
1

1

n n

z

Q n r
v r

R n R

   
        

. (4) 

In the case of Newtonian fluid ( 1n  ), we obtain a standard parabolic flow. 

We will integrate the momentum equation across the cross-section (the second equation 

of the system (3)) to obtain: 
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where  is the fluid density. 

Using the velocity profile (4), we transform the obtained expression: 

   

 
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   

Under the assumption of a constant cross-section pressure (which is valid for Poiseuille 

problem), pressure term is rewritten as follows: 

Fig. 1. Perturbation of cylindrical tube Fig. 2. Velocity profiles for various  
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The first two viscous terms can be transformed to the form: 
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After some algebra calculation with the long-wave approximation taking into account, the 

following expression is obtained: 
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The last viscous term 
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has the order 
2 and can be neglected. 

Further, as a matter of convenience, the problem is considered in a dimensionless form. 

The flow rate 0Q , the inlet radius of the tube section 0R  and the fluid density   
are chosen as the dimensionally independent scales. The dimensionless parameters (denoted by 

a tilde) are expressed in terms of the dimensional parameters: 
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(5) 

where Re  is the generalized Reynolds number of Metzner-Reed [27].  

Omitting tildes, as a result, the dimensionless equation is written as: 
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After the substitution of the resulting ratio of the dimensionless expression for pressure 

(1), the latter equation is transformed to: 

 
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 (6) 

It requires three boundary conditions. Two of them are obvious and correspond to 

a fixed radius of the tube at its ends. For example, a tube is putted on the ends of metal tubes in 

experiments on Starling resistor. Also, we will assume that the transmural pressure inP P  at 

the leading end of the tube is known: 

   
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dz N
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Thus, the equation (6) with these boundary conditions is the dimensionless boundary 

value problem describing the stationary state of the tube conveying fluid. 

Equation (6) can be rewritten to: 

 

2
5

2 2 2 3 1

3 1 16
1 .

2 2 1 Re
s n

d N d R n
R R

dz dz n R





  
               

 (7) 

The one-dimensional equation (7) was obtained and investigated in [42] without taking 

the tension into account (i.e., for   0N  ). In this case, it transforms into an equation 

of the first order, and it is integrated in an explicit form. For a given inlet radius (0) 1R  , 

the solution is always unique and exists only for a finite length maxL L . When the tension is 

accountеd ( 0N  ), equation (7) is an equation of the third order with variable coefficients and 

is not integrated in an explicit form. The following sections are devoted to a qualitative study 

of the properties of the boundary value problem (7). 

2. SOLUTION OF THE INVISCID PROBLEM  

2.1. Analysis of equilibrium points 

First, we consider the case when the Reynolds number tends to infinity, Re ,   then 

the differential equation (7) has the first integral: 
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where according to the boundary conditions for 0z   
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 Let us denote R x  and /R z y   . Then, taking (8) into account, we obtain the 

system: 

  2 4

3 1
,
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x y

n x A
y
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 

   
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


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where the prime denotes the derivative with respect to z . 

Under the new notations, the remaining boundary conditions are written as: 

(0) ( ) 1.x x L   (10) 

In order to find a solution of the boundary value problem (9), (10), it is necessary to 

choose the initial value (0)y  on the line (0) 1x  , such that the value of 𝑧, for which the 

trajectory ( ),x z ( )y z  returns to the line 1x   is equal to the length of the tube .L  

We will conduct the qualitative phase plane for the system (9) analysis. First, we find 

the equilibrium points 0 0( , )x y
 
of the system (9). Obviously 0 0y 

 
and 0x is a solution of 

equation 

  5 4 0,  T x x Ax      (11) 
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2

3 1
  0
2(2 1)

n

n


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. 

It can be shown that equation (11) can have no more than three real roots. The one, 

always present root, is negative, and two roots are positive for crA A . Moreover, one root is 

greater than 4 / 5,crx A   the other is less. The one multiple root crx x  is positive and the 

other is negative for crA A . There is only one negative root for crA A . The critical value is 

denoted by index  cr . The value 
1

5
4/5

5

4
crA     

corresponds to the multiple root of equation (11), which is equal to the value crx , for which the 

derivative of the function  T x  becomes zero. 

As an example," "T x  diagram is plotted for 0.7  , 0.2n   and the values 

1.00,crA A  
 

1.08 crA A  
 
( 0.005),inP  

 
0.37 crA A  

 
( 0.500)inP    (Fig. 3). 

As far as x  has the sense of the tube radius, only the positive roots 0 0x   have 

a physical meaning. It can be shown that the trajectories of the system (9) cannot intersect 

the axis 0x  , therefore we will restrict oneself with the study of the half-plane 0x   

of the phase plane (11). 

Henceforth, we need the value of the A  for 0inP  : 

0 ( 1).A A      

The value of 0A
 
coincides with the value of crA

 
for 1/ 4,  and in other cases always 

0 crA A , because the function 
1

 
5

0 4/5

5
1

4
crA A       

is always positive for 1/ 4   (Fig. 4). 

Let us consider the types of equilibrium points for crA A (in the opposite case there are 

no equilibrium points 0 0x  ). After linearization, the second equation of the system (9) with 

respect to the point 0( ,0)x  becomes: 

0

,

4
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The roots 1  and 2  of the characteristic equation 
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04
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 

 

determine the behavior of the phase trajectories of the system (12) on the phase plane. 

 Depending on the eigenvalues 

0

4
5 ,
 

    
 

A

N x
 

we obtain: 

1) the first equilibrium point 0 4 / 5x A 
 
is saddle; 
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2) the less equilibrium point 0  4 / 5x A 
 
is center. 

We consider three possible types of phase trajectories depending on .A  A number 

of examples are given below for the parameters 

0.7  , 2.4N  , 0.2n  , (13)  

which correspond to 0 1.08A   , 1.00crA   . Let us introduce the value of the inlet pressure 

crP , wherein crA A : 

1

5
4/5

5
  ( 1) 0.

4
crP

 
      

 
 

1. 0 .crA A A   

The inlet pressure in the tube inP  is negative, but not too large in absolute value  

( 0 in crP P  ). There are two equilibrium points, one of which is the center, 

and the other is the saddle. 

1.1. For   1 / 4,   both points correspond to 0 1x  , i.e. the narrowed state of the tube. 

For example, Fig.5 shows the phase plane for (13) and 0.010inP  
 
( 1.06A  ). 

As the absolute value of the transmural pressure increases, the equilibrium points 

approach to each other. Namely, the point corresponding to the center moves 

in the positive direction of the axis OX , and the point corresponding to the saddle 

moves from 0 1x   (one of the possible values of 0x  for 0inP  ) in the negative 

direction of the axis 𝑂𝑋. An example of the phase plane for (13) and 0.040inP  
 

( 1.02A  ) is shown in Fig. 6. 

1.2. For 1/ 4,   both points correspond to 0 1x  . When | |inP
 
increases, the points 

approach to each other similar to the previous case. An example of the phase plane 

is shown in Fig.7 for 

0.1  , 2.4N  , 0.2n  , 0.007inP   . 

 

 

Fig. 3. Function graph  Fig. 4. Function graph (  
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2. .crA A  

The inlet pressure inP  is negative and large enough in absolute value  

( 0 cr inP P  ). The equilibrium points merge for crA A , and they disappear 

for  crA A . An examples of phase planes are shown in Fig. 8 for values (13) and in crP P   

( crA A ) or in Fig. 9 for 0.100inP    ( 0.93 crA A   ). 

3. 0A A , the value 0inP 
 
(the inlet pressure increases). 

In this case, there are two equilibrium points, one of which is the center, 

and the other is the saddle. Moreover, the saddle point has the value 0  1x  , 

and the center has the value 0 1x  , which corresponds to the inflated and constricted states of 

the tube accordingly. The phase plane for (13) and   0.040inP   ( 0  1.13A A   ) is shown in 

Fig. 10. 

Fig. 5. Phase plane for (13), 

0.010, 
in
P    

0 cr
A A A   

Fig. 6. Phase plane for (13), 

0.040, inP    0 crA A A   

Fig. 7. Phase plane for 0 1,x   

0.040inP   , 0 crA A A   

Fig. 8. Phase plane (13), crA A  
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As the transmural pressure increases, the equilibrium point corresponding to the center 

moves closer to 0,  and the equilibrium point corresponding to the saddle moves from 1, 

toward the positive direction the OX  axis. An example of the phase plane for (13) and 

0.500inP   ( 01.79A A   ) is shown in Fig.11. 

As the system (9) does not have singularities for 0 x   and, consequently, does not 

suffer other bifurcations of the phase plane, except the merging and disappearance of 

equilibrium points at crA A . Thus, the examples of phase planes shown above for the cases 

1, 2, 3 do not qualitatively change under other parameters of the problem. 

Analysis of the maximal possible length of the tube 

Below, we will investigate the value of z L  at which the phase trajectory returns 

on the line 1x   for (0) 1x   and different values of (0)y . 

Fig. 9. Phase plane for (13), 

0.100,inP   crA A  

Fig. 10. Phase plane for (13), 

0.040,inP  0A A  

 

Fig. 12. Phase plane for (13), 

0.500,inP   (0)y   

Fig. 11. Phase plane for (13), 

0.500,inP   0A A  
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If the initial value (0)y   then /dx dz , and from the structure of phase 

planes it is seen that the tube is unrestricted inflate, so that the solution of the boundary value 

problem does not exist. 

Let us prove that if the initial value (0)y  , then the trajectory travel time before 

its return to the line 1x   (value of 𝑧) tends to 0. The phase plane for (13) and (0)y  can 

be an example of such a trajectory (Fig. 12). 

The trajectory can be decomposed into three sections: 

1. .y   

In this section, the trajectory is close to a straight line parallel to the OX  axis. 

According to the first equation of the system (9), x y  , the value /dx dz , which 

guarantees a high speed of passage of this section. At the same time, 

the value of 𝑥 (distance traveled) is not greater than 1, which means that the value of 𝑧 (the 

time of passage of this section) will tend to 0 . 

2. The section of the trajectory from y  to y  

In this section, the value of 0x  and the y  rate was an order of 
41/ x , according to 

the second equation of the system, and the other terms can be neglected. Throwing off them, 

we consider simplified equations for determining the time of motion of the trajectory along 

the vertical section 

  2 4

,

3 1
,

2 2 1 π

x y

n
y

n Nx

 


  
 

 

or 

  2 4

3 1
.

2 2 1 π


 



n
x

n Nx
 (14) 

Taking into account the relation 

  ,
y x y

x y y
x z x

  
   

  
 

equation (14) can be integrated to obtain 

 
2

2 3

3 1
,

2 1 π  3


  



n
y C

n N x
 (15) 

where due to the initial condition (0) 1x  , 

 
2

2

3 1
(0)

3 2 1 π


 



n
C y

n N
. 

Equation (15) is integrated the second time, resulting in the solution of the equation 

(14): 

 

2 2

2 3

,   const
3 1

3 2 1 π

   






d

z C C
n

C
n N





. 

Owing to the initial condition 2 0C  , so that the solution becomes: 
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 

1

2 3

ζ

3 1

3 2 1 π ζ








x

d
z

n
C

n N

. 

Solution is rewritten in the form: 

   

 
1

3

2 5/6 3

3 1 1 ξ
,

3 2 1 π 1 ξ

 
    


C

C x

n d
z

n N C





 (16) 

when changing variables 

 

1

3

2

3 1
ζ ξ

3 2 1 π

 
    

n

n NC
, 

 
 

1

3

2

3 1
χ  .

3 2 1 π



 
    

n
C

n NC
 

The integral in (16) at ξ 1   (approximation of the vertical section to 0x  ) 

is convergent and has an order of χ( ),C  i.e. an order of 1/3,  C  and therefore z  has 

an order of 
11/2 ~ (0)C y
 . Thus, the time z  of passing the vertical section 

of the trajectory tends to 0  for (0)y  . 

3. .y  

In this case, the trajectory is close to a straight line parallel to the OX  axis, and the 

value of z  tends to 0 , similar to the trajectory section for .y  

Hence, 0L  for (0)   ,y   therefore the maximum length of the tube maxL , 

for which a solution of the boundary value problem exists, can be achieved only for limited 

  (0) .y  

Fig. 13. Phase plane for (13),  

0.050,inP   0 crA A A   

 

Fig. 14. Phase plane for 0 1x  , 

0.007, inP   0 crA A A   
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For the limited   (0)y , the value of L  can be infinitely large only if the trajectory 

passes near the saddle point, since in its neighborhood the speed on the trajectory falls almost 

to zero, and it can remain in this neighborhood arbitrary long time. If the value 0x  

of the center point is 1 (i.e. κ 1/ 4, 0 inP ), then the tube will not inflate and constrict, and 

always retain its initial shape, so the length of the tube L  can be infinitely large. In other 

cases, the center point can not suit, because the phase trajectories are closed around this 

critical point in its neighborhood, hence the trajectory starting at (0) 1x   can not approach 

the center point too close. 

Let us now analyze the values of maxL  for the previously examined three cases: 

1. 0 .crA A A   

In this case, the tube can be arbitrarily long only for (0)y  close to the separatrix 

corresponding to the saddle point. 

1.1. An example of such a trajectory is shown for equilibrium points 0 1x   and values 

(13), 0.050,inP  
 

1.01A  , (0) 0.051y   , close to the separatrix of the saddle point 

(Fig.13). 

1.2. For equilibrium points 0 1x  , an example is the trajectory for the values 

of the parameters β 0.1 , 2.4,N     0.2,n   0.007inP   , (0) 0.025y   (Fig.14). 

2. .crA A  

Since there are no equilibrium points, the value of maxL  is finite. Thus, steady states of 

the tube conveying fluids for sufficiently long tubes do not exist in this case. 

3. 0.A A  

In the case, which corresponds to a positive inlet transmural pressure, the tube can also 

be arbitrarily long for (0)y , sufficiently close to the separatrix corresponding to the saddle 

point. An example is the trajectory for the parameters (13) and 0.100,inP 
 

1.01,A    
(0) 0.085,y   corresponding to the separatrix of the saddle point (Fig. 15). 

 

Fig. 15. Phase plane for (13), 0.1,inP   0A A  
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Consequently, the tube can be arbitrarily long for a steady state only 

for crA A  (which corresponds to  in crP P ). 

Non-uniqueness of the solution 

In this section, we consider the non-uniqueness of the solution of the boundary value 

problem (9), (10) depending on the parameter A  for different tube lengths. 

Most of examples discussed below are given for the dimensionless parameters 

 β 0.4,  0.2,N   0.2,n   (17)  

then 0  1.14,A  
 

1.12.crA    

1. 0 .crA A A   

1.1. In this case, for equilibrium points 0 1x   and for any values of the length  L , 

there is a non-uniqueness of the solution, namely, there are two trajectories along which it is 

Fig. 16. Phase plane for (17), 

0.003, inP    0 ,  crA A A   5L   

Fig. 17. Function graph ( )R z  for (17), 

0.003, inP    0 , crA A A   5L   

Fig. 18. Phase plane for (17), 

0.003, inP    0 , crA A A   25L   

Fig. 19. Function graph 0 ,  crA A A   for (17), 

0.003, inP   0 ,  crA A A   25 L   
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possible to return to the line 1x   for the same value of  L . One solution corresponds to 

 0 0sy y  , where 𝑦𝑠 is the intersection of the separatrix coming from 

the saddle point with the line 𝑥 = 1. The second solution corresponds 

to  0 0sy y  , and the trajectory goes around the center point. 

For example, two trajectories corresponding to   5 L   are obtained for the parameters 

(17) and 0.003,inP   1.13 A   and the values (0) 0.11400y    and (0) 0.01635y     
(Fig. 16). The tube radius ( )R z  corresponding to these solutions is plotted in Fig. 17. Another 

example, corresponding to 25L  , is plotted in Figs. 18, 19 (   (0) 0.01672y    and

(0) 0.01674y   ). Let us consider the tube length as a function of the various initial values 

of (0).y  The graph has the asymptote (0) sy y , corresponding to the value, where (0)y  
belongs to the separatrix of the saddle point. For the previously considered example, the graph 

has the asymptote   (0) 0,01673sy y    (Fig. 20) with the parameters (17). The solution exists 

only for negative values of (0)y . Calculations show that the decrease of L  is monotonically as 

(0)y  decreases. Therefore, for any values of L  there are two solutions, namely with and 

without passing around the center point. 

1.2. If the equilibrium points correspond to 0 1x  , then the number of solutions depends 

on the length of the tube. For sufficiently small 1crL L , there are two trajectories corresponding 

to different initial (0)y , similar to the case crA A , which will be considered below. There is 

no solution for 2 1cr crL L L  . Next, for 3 2cr crL L L  , two more solutions appear, 

corresponding to one additional pass around the center point, at that they are symmetric with 

respect to the middle of the tube. For 3 2  cr crL L L   two additional solutions appear. For 

sufficiently large L , there exists any prescribed even number of solutions. Each pass around 

the center point corresponds to a local contraction of the tube and subsequent widening to the 

original radius. For example, four solutions corresponds to the value 40L  : one without pass 

around the center point, two with one pass, and one with two passes  

(Fig. 21). 

Fig. 20. Function  for (17), 

 

Fig. 21. Function   for , 
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The plot of L  versus the initial value 𝑦(0) has two asymptotes, sy  and sy  , 

corresponding to two separatrices of the saddle point (Fig. 22). There is no solution 

of the boundary value problem for (0) sy y   or 1 2  cr crL L L  . There are two solutions for 

(0) sy y   and a small tube length 1crL L . There is uniqueness 

of the solution for (0) 0y  and 1crL L , or for 0 (0) sy y    and 2 crL L . There is no solution 

of the boundary value problem or (0) sy y   and 1crL L . There may exist a number of 

solutions corresponding to the number of returns to the line 1 x   in the case of passing around 

the center point for (0)s sy y y   , and for sufficiently large tube lengths 2( )crL L . 

 

Fig. 22. Function graph  for , 

and shapes of curves 

corresponding to each solution 

Fig. 23. Function L(y(0))
 
for (17),  

 

Fig. 24. Phase plane for (17), 

 
Fig. 25. Function  for (17), 
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2.    .crA A   

Taking into account that there are no equilibrium points, the solution does not exist for 

large values of L. In other words, there is no trajectory returning to the point x(L) = 1. However, 

there are two solutions for sufficiently small values of L , that is there are two different 

trajectories corresponding to different initial values y(0) and the same values L , such that 

x(L) = 1. 

Since 0L   for    (0) 0y   and (0)y  , the plot of the tube length L against the 

initial value (0)y  (Fig. 23) has a maximum corresponding to the uniqueness of the solution. 

Thus, there is no solution for maxL L , there is a unique solution for max ,L L  there are two 

solutions for maxL L . The value (0)y  is negative, because the existence of a solution is 

possible only in this case. 

For example, the phase plane is plotted for the parameters (17)  

and 0.100,inP  
 

0.89A   in Fig. 24. There are two different trajectories corresponding to  

уthe same value 0.83L   for different initial values (0) 0.2y   , 𝑦(0) ≈ −2. Both solutions 

are plotted in Fig. 25 as a function of the tube radius R against the z  coordinate. The function 

L  versus (0)y  has a maximum 1.955crL   at the point (0) 0.52y    (Fig. 23). 

3. 0.A A  

 In this case, when the saddle point 0 1x   and the center 0  1x  , the solution is always 

a non-uniqueness. There are two trajectories corresponding to different initial (0)y  for 

sufficiently small values of L . Similary to the 0 crA A A   case, one solution corresponds to 

0 (0) sy y   , and the other solution where the trajectory passes around the center point 

corresponds to (0) 0sy y   . 

For example, two trajectories corresponding to 7.5L   exist for 

( 1.15)A    and the initial values (0) 0.025y   , (0) 0.016y  (Fig. 26, 27). 

For 1 0crL L  , two more solutions appear, corresponding to one additional pass 

around the center point, and the first turns into the second when reflected from the middle of 

the tube. Four additional solutions appear for 2 1cr crL L L  . There exists any prescribed 

0.003inP 

Fig. 26. Phase plane for(17), 

 

Fig. 27. Function  for (17), 
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number of solutions for sufficiently large L . Each pass around the center point corresponds to 

a local contraction of the tube and subsequent widening to the original radius. 

For example, eight solutions correspond to the value 20L  , namely, one without a pass 

around the center point, three with one pass, and four with two passes (Fig. 28). 

The plot of L  versus the initial value (0)y  has two asymptotes, sy   
and sy  , 

corresponding to the two separatrices of the saddle point (Fig. 29). There is no solution of the 

boundary value problem for (0) sy y  . There are two solutions 

for (0) sy y   and sufficiently small L . There is no solution for (0) sy y   

and the large value 𝐿. For (0)s sy y y  
 
and for large values of the tube length L , there exist 

a number of solutions corresponding to the number of returns to the line 1x   for the case of 

passes around the center point. 

4. SOLUTION OF THE VISCOUS PROBLEM 

If the Reynolds number is finite, then in equation (8) the variable A ≠ const, namely 

( )A A z  is an increasing function of 𝑧. Moreover, the derivative of this function is bounded 

from below by a constant D  ( ( ) 0A z D   ) for limited values R(z) < M (M = const). 

Therefore, the motion of the trajectory ( )x z , ( )y z  can be represented as motion along 

the vector field (9), with simultaneous evolution of this field due to the growth of A . Since 

( )A A z  is growing function, then the problem reduces to the case crA A
 
for some finite z

. Physically, this corresponds to a drop of pressure below crP
 
due to viscous losses. After that, 

the trajectory leaves the domain 1x   at a finite time and does not return to the line 1x  . 

Hence, the solution of the boundary value problem exists only for max (Re)L L , and if 

the length maxL
 
is exceeded, there is no steady state. 

There can be a non-uniqueness of the solution, similar to the inviscid case, depending 

on Re  and, accordingly, the rate of 𝐴 increase. For example, two trajectories corresponding to 

Fig. 28. Function graph  for (17), 

 

Fig. 29. Function  for (17), 

𝑃𝑖𝑛 = 0.003, and shapes of  

curves corresponding to each solution 
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L = 10 are obtained for (17), 0inP 
 
and Re 1000  (Fig. 30). At that, the tube constriction is 

located closer to the tube end in the solution with pass around center point. 

The function ( )R z  is plotted for (17), 0.003 inP , Re 250  and (0) 0.092 y ,

(0) 0.018 y  (Fig. 31, solid lines) for comparison with the results obtained for the inviscid 

problem in Fig. 17 (see Fig. 31, dashed lines). It is seen that the constriction of the tube is shifted 

under the influence of viscosity towards the tube end in both solutions. In addition, 

the constriction of the tube becomes smaller in a solution with pass around center point, 

and the constriction of the tube increases in a solution without pass around center point. 

A nonuniqueness is possible for large finite Reynolds number Re  and positive input 

transmural pressure 0inP  (and also for 0,  κ 1/ 4   cr inP P ), similar to the case 0A A  with 

several passes around center point. As an example, Fig. 32 shows the plot ( )R z  

for the parameters (17), 0.03 inP 
 
and Re 1500 . Solution with two constrictions corresponds 

to (0) 0.0745y  , (0) 0.0316y    and (0) 0.0292y  , solution with one constriction 

corresponds to (0) 0.0317y    and (0) 0.0293y  , the widening exists for (0) 0.0746y    

(Fig. 32). 

5. BLOOD VESSELS 

The human cardiovascular system consists of the heart and blood vessels, such as 

arteries, capillaries and veins. Blood moves along the vessels under the influence of pressure 

drop, namely from high to low pressure region. Considering that the vascular wall is elastic, 

changes in transmural pressure are accompanied by changes in diameter and tension. 

The mechanical properties and geometric parameters of blood vessels are presented 

in Table and previously were studied in a number of papers. The dimensionless parameters 

(denoted as by the tilde) are expressed in terms of the dimensional parameters by (5) 

and 0/L L R . The radial stiffness can be found as 
2 2

0(1 )

Eh

R
 


, as far as it is known that 

the range of values of the Young's module E  for blood vessels is 0.1–1.0 MPa [5] 

and the average value is usually about 0.4 MPa [41], and the value of the Poisson's ratio 0.4.   

Fig. 30. Function  for (17), 

 

Fig. 31. Function  for (17), 
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Table  
Parameters of blood vessels 

 
0R , cm 

[43] 

h , cm 

[12] 
0V , cm/s 

[43] 

Re  

[43] 
inP , N/cm2 

[32] 

Ascending aorta 1.00 – 1.60 0.20 22.00 –63.00 1600– 5800 1.33 

Large arteries 1.00 – 3.00 0.10 20.00 – 50.00 110 – 850 1.10 

Large veins 0.25 – 0.50 0.05 15.00 – 20.00 210 – 570 0.13 

Vena cava 0.10 0.15 11.00 – 16.00 630 – 900 0.10 

 

 

In its turn, the longitudinal tension can be found as N Ehl , where l  

is the longitudinal strain of the vessel. In calculations, the tension ( )E l  equals to 

5 N/cm2 [29], which corresponds to the stresses that the wall of the vessel experiences 

in the human body. The index of the power law fluids is assumed equal to one ( 1)n   

in the calculations, because the blood flow in large vessels usually corresponds to Newtonian 

properties. 

According to the calculations, solutions exist for parameters corresponding to the aorta 

and cava, and it is non-unique on all occasions. Two trajectories corresponding to the real length 

of the vessel 4L  cm [25] are obtained for the values of the ascending aorta parameters  

( 0 1.50R  cm [25], 0 30 V  cm/s, Re 1900 ) (Fig. 33). 

Another example is an artery. Their walls are thick enough to stand the high pressure 

that is created under powerful blood ejections. Also, walls do not fall off, if they are not filled 

with blood. Two trajectories exist for the parameters of the arteries (for example, Table 1 left 

renal artery 0 0.25R  cm [25], 0 35 V  cm/s, Re 370  , 3.00L  cm [25] or right common iliac 

artery 0  0.44R  cm [25], 0 35 V  cm/s, Re 650 , 5.80L  cm [25]), one of which corresponds 

to slight inflation, and the second corresponds to a significant constriction 

at the tube end (Fig. 34, Fig. 35). 

Fig. 32. Function  for (17), 

 

Fig. 33. Function  for ascending 

aorta 
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In its turn, the pressure in the veins is lower then the pressure in the arteries, 

so the walls of the veins are thinner. When considering the correspondence of the radius against 

the tube length with the parameters corresponding to the veins (for example, left internal iliac 

vein 0  0.25R  cm [25], 0 20 V  , Re 210 , 3.00 L  cm [25] or precava 0 1.10R  cm [25], 

0 15 V  cm/s, Re 700 , 8.00 L  cm [25]), two trajectories exist, similar to the trajectories 

obtained for the arteries. (Fig. 36, Fig. 37). 

6. DISCUSSION 

When a viscous fluid flows in an elastic vessel, a pressure drop occurs due to viscous losses, 

which leads to a gradual decrease in the diameter of the vessel due to the elasticity 

of the walls. In its turn, the decrease of the radius causes higher pressure drop than would be in 

a vessel of constant cross-section, which in turn produces a more intense contraction 

of the cross-section. It was shown in [42] that the length of vessel without tension can only 

Fig. 36. Function  for left internal 

iliac vein 

Fig. 37. Function  for precava 

Fig. 34. Function  for left renal 

artery 

Fig. 35. Function  for right 

common iliac artery 



A.B. Poroshina, V.V. Vedeneev 

ISSN 2409-6601. Russian Journal of Biomechanics. 2018. Vol. 22, No. 2: 169-193 190 

be finite, namely, the radius decrease becomes infinitely fast for 
maxL L , and the solution 

of the problem does not exist for 
maxL L . 

In this paper, it is proved that the tension cannot essentially change this result and 

prevent the collapse of the vessel as its length increases. In other words, the steady flow of the 

power low fluid in a tensioned elastic vessel is possible only for a limited length of the vessel 

maxL L , because of the viscosity of the fluid causing the pressure losses. In long vessels, the 

flow can only be unsteady, which may result in the phenomenon of flutter in elastic tubes 

conveying fluid [16, 29]. 

This situation differs fundamentally from the results of [15], where it is shown that if 

the viscosity is neglected, but the separation of the flow from the wall in the contraction 

is taking into account, the solution exists for arbitrarily long tubes. 

Also in the present paper, it is proved that when the solution of the boundary value 

problem of an elastic vessel conveying power law fluid exists (
maxL L ), it is always 

nonunique for sufficiently large Reynolds numbers. 

For negative transmural pressure, in addition to the "natural" solution corresponding 

to a gradual radius decrease and subsequent increase due to tension (in the terms of this study, 

this solution is without pass around center point), there is a second solution in which the 

radius decrease is more significant (the solution with pass around center point), Fig. 31. The 

second solution has a greater predisposition to both the flow separation from walls and a loss 

of axisymmetry of the vessel, considering a more drastic and stronger contraction of the cross 

section. Apparently, this solution cannot be realized in real vessels. 

For positive transmural pressure, in addition to the "natural" solution, in which 

the vessel is inflated, there is a solution family in which there is one or more additional 

constrictions (solutions with passes around center point), Fig. 32, which, apparently, cannot 

be realized in the vascular system for the same reason.  

As a result, just one of the few existing solutions corresponds to the "natural" state 

of the blood vessel. Meanwhile, any of these solutions can be realized in the numerical 

solution of the boundary value problem, since they are all equivalently correct in the context 

of the one-dimensional model. Since at the present day one-dimensional models 

of the network of blood vessels are one of the main instruments for the study of hemodynamic 

problems [1−3, 8, 9, 11, 14, 17, 30, 31, 36, 38, 39], the fact of non-uniqueness of steady flow 

is extremely important. Calculations of the dynamics of the pulse wave in a network of 

vessels always begin with some initial condition, which is natural to choose to be a steady 

flow. If this initial condition is not chosen correctly, then the subsequent dynamics will not be 

calculated correctly. Thus, the results of this paper show that additional control of the physical 

correctness of obtained solutions is necessary, because of the non-uniqueness of the steady 

state. 

CONCLUSIONS 

In the paper, we derived a one-dimensional equation of the steady state of an elastic 

tube conveying power law fluid, which takes the fluid rheology and the resulting laminar 

velocity profile into account. 

For the motion of an ideal fluid (the Reynolds number  Re ) with a given velocity 

profile, the conditions for the existence of a steady state for arbitrarily long tube length are 

obtained, namely, the value of the inlet transmural pressure should be either positive, 

or negative and greater than some critical value ( 0inP   or 0cr inP P  ). When viscosity 

is taken into account (finite Reynolds numbers), the tube can always have only a finite length.  
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oscillations can be associated with the previously known oscillatory states, caused by the drop 

of pressure in the fluid, loss of stability of the tube and its periodic collapses. 

For sufficiently large Reynolds numbers and maxL L , there is a non-uniqueness 

of the steady state of the tube that corresponds to the boundary conditions of the problem. 

Namely, two solutions exist for 0in crP P   or 0 cr inP P 
 

and κ 1/ 4  , 

and a multiple-solution family exists for 0inP 
 

or 0cr inP P   and κ 1/ 4 .   

One of the solutions corresponds to a slight contraction or inflation of the tube 

with a smooth radius change along the length. The second solution (or solution family) 

corresponds to steep local tube contractions with subsequent extension to the original radius. In 

real life, the existence of such states is apparently impossible in connection 

with the possible loss of the tube axisymmetry and the separation of the flow in the local 

constriction. The model considered here does not describe these phenomena. It is likely that the 

reorganization to such a regime actually leads to the appearance of an oscillatory nature 

of the flow. 

The results show that additional control of the states obtained in the numerical 

calculations in hemodynamics based on one-dimensional models is necessary in connection 

with the revealed non-uniqueness of the solution. Namely, only one of possible solutions 

of the boundary value problem is physically correct (in the terms of this paper, this solution 

is without pass around the center point), the other have one or more nonphysical vessel 

compressions (corresponding to the pass around the center point). The absence of such control 

in numerical modelling can lead to incorrect results of calculations, which do not reflect 

the real motion of the biofluid in the vessel. 
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