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a b s t r a c t

We study possible steady states of an infinitely long tube made of a hyperelastic
membrane and conveying either an inviscid, or a viscous fluid with power-law rheology.
The tube model is geometrically and physically nonlinear; the fluid model is limited
to smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s
stretch and flow velocity range at which standing solitary waves of both the swelling
and the necking type exist. For the viscous case, we first analyse the tube’s upstream
and downstream limit states that are balanced by infinitely growing upstream (and
decreasing downstream) fluid pressure and axial stress caused by fluid viscosity. Then
we investigate conditions that can connect these limit states by a single solution. We
show that such a solution exists only for sufficiently small flow speeds and that it has
a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite
tube (infinite either upstream or downstream), there exist both kink and solitary wave
solutions. For finite-length tubes, there exist solutions of any kind, i.e. in the form of
pieces of kink waves, solitary waves, and periodic waves.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear waves in fluid-filled elastic tubes play an important role in problems of the cardiovascular system (Pedley,
2003; Cao et al., 2019). Solitary wave solutions are used for the analysis of pulse waves as well as for the study of
the formation of aneurysms (Alhayani et al., 2014; de Gelidia and Bucchia, 2019; Dehghani et al., 2019). In connection
with solitary waves, several experimental studies of bulge formation and propagation in elastic tubes have been
conducted (Kyriakides and Chang, 1991; Pamplona et al., 2006; Guo et al., 2014; Wang et al., 2019). Theoretical analysis
of nonlinear solitary waves in fluid-filled elastic tubes was initially performed with a number of simplified assumptions,
such as neglecting axial displacement, weakly nonlinear waves, and a long-wave approximation (Yomosa, 1987; Demiray,
1996), in applications to pulsatile blood flow in arteries. However, it was shown by Epstein and Johnston (2001) that
the exact equations of motion for a hyperelastic membrane tube conveying an inviscid fluid have two first integrals and,
consequently, can be analysed directly without any additional assumptions. In particular, the existence of solitary waves
was proved analytically for the exact membrane tube model. Using the exact model, Fu et al. (2008) studied steady solitary
waves for different models of hyperelastic tube material. The relation between the approximate and exact formulations
and between the corresponding weakly and fully nonlinear solitary waves was established by Fu and Il’ichev (2010).

The bifurcation diagram shows that a travelling solitary wave separates at zero amplitude from a linear wave that has
a finite travelling speed (Il’ichev et al., 2020). When the solitary wave amplitude grows, its travelling speed decreases,
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Fig. 1. Cylindrical membrane tube in the initial and the deformed state.

nd the solitary wave branch ends, depending on the material model and properties, as either a standing solitary wave
i.e. a static localised bulge) or a kink wave (Il’ichev et al., 2020). A standing solitary wave solution can be considered
o be a mathematical model of aneurysm in a blood vessel. As a more adequate description of aneurysm formation, an
nitial localised wall thinning was introduced into the tube model in the studies of Fu and Xie (2012) and Il’ichev and Fu
2014), where bulged solutions and their stability were analysed. It was shown that there are two types of bulged tube
tates, one with a smaller and one with a larger amplitude. For the vanishing tube imperfection, the first state tends to a
niform tube, while the second state tends to a standing solitary wave. It was shown that the first state is stable, while
he second state is not. However, the presence of a fluid flow stabilises the standing solitary wave (Il’ichev and Fu, 2012;
u and Il’ichev, 2015) so that both solutions can be stable. In this series of studies, the membrane tube was modelled
y an exact, geometrically and physically nonlinear model, but the fluid model was simplistic, with the fluid assumed
o be inviscid with a constant velocity distribution in each cross-section. With respect to biomechanical applications,
he tube model also had several limitations. First, actual blood vessel properties (Amabili et al., 2020) are anisotropic so
hat hyperelastic blood vessel models should include an anisotropic part (Vassilevski et al., 2015; Breslavsky et al., 2016).
ext, blood vessel walls are sufficiently thick so that their bending stiffness and corresponding shell effects (studied,
.g., by Karagiozis et al., 2007) can be important. Finally, axisymmetry of deformations was assumed, which is not always
he case in the cardiovascular system. Nevertheless, this series of studies is an important step towards understanding the
onlinear dynamics of real blood vessels.
Another type of studies, that of fluid flow in collapsible tubes (Grotberg and Jensen, 2004; Heil and Hazel, 2011),

eals with viscous fluids, but the tube model, in its 1-dimensional formulation, is either linear or extremely simplified
onlinear in the form of the ‘tube law’ (Jensen and Pedley, 1989; Jensen, 1990; Pedley and Luo, 1998; Whittaker et al.,
010). Although they are more advanced in terms of fluid mechanics, this type of models does not admit of a bifurcation
f a uniform tube to a bulged solitary wave solution. Also, all studies of collapsible tubes consider Newtonian fluid
lows; however, it is known that blood in small vessels has essentially non-Newtonian rheology (Moore et al., 1985; Ku,
997; Gijsen et al., 1999; Anand and Rajagopal, 2004; Galdi et al., 2008). Yushutin (2012) improved the 1-dimensional
luid model to include non-Newtonian power-law rheology, which was used for the analysis of steady states (Poroshina
nd Vedeneev, 2018) and stability (Vedeneev and Poroshina, 2018) of linearly elastic tubes conveying fluid, under the
ssumption of long-wave and low-frequency motions.
The goal of the present paper is to combine the two approaches used in the two series of studies, to analyse
geometrically and physically nonlinear hyperelastic membrane tube conveying a viscous non-Newtonian fluid. In

ection 2, we upgrade the exact tube model of Epstein and Johnston (2001) by including non-Newtonian fluid viscosity
nder the assumptions of Yushutin (2012). The rest of the paper deals with steady-state solutions of this system. In
ection 3, we analyse the first integrals of the system of equations and introduce the phase plane used in the subsequent
nalysis. Section 4 is devoted to solitary wave analysis, including a non-constant cross-section velocity distribution but
eglecting fluid viscosity. In Section 5, we include fluid viscosity in the analysis. We prove that for the Gent tube material
nd sufficiently small fluid velocities, there exists a unique steady-steady solution for an infinitely long tube, of which the
ube radius changes monotonically so that no solitary waves are possible. For semi-infinite tubes (infinite either upstream
r downstream), a second solitary wave solution exists. For finite-length tubes, several solitary wave, periodic wave, and
onotonic solutions exist. Section 6 summarises the results and concludes the paper.

. Equations of motion of an elastic tube containing a flowing viscous fluid

.1. Formulation of the problem and preliminary relationships

We consider a cylindrical membrane tube with a circular cross-section with a thickness of h and a radius of R, made
of hyperelastic material (Fig. 1). The ratio h/R is sufficiently small for the bending stresses to be neglected compared to
the membrane stresses. The tube conveys a non-Newtonian viscous fluid whose rheology obeys a power law. We restrict
ourselves to axisymmetric motion with two components of the displacement vector, longitudinal (axial) u and radial w.

Epstein and Johnston (2001) gave a self-contained derivation of the exact equations of motion for the case of an inviscid

fluid. Here we briefly revisit this derivation to take fluid viscosity and rheology into consideration. The equations of motion
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Fig. 2. The undeformed dx and the deformed dx∗ element of the tube (a); fluid forces (b).

Fig. 3. Forces acting on a deformed shell element.

are derived in Lagrangian cylindrical coordinates corresponding to the undeformed state of the tube. The x axis is directed
long the tube’s axis, and the angle θ is the circumferential direction. The axial and circumferential length elements are
enoted by dx and ds; the area element is dA = dxds (Fig. 1). In the deformed state, the lengths and area of the same

elements, as well as other values, will be denoted by a star.
In what follows, we will need a relationship between the length of the element dx before and after deformation and

the angle ϕ between them. From Fig. 2a we have

dx∗
=

√
(1 + u′)2 + w′2dx, ϕ = arctan

(
w′

1 + u′

)
,

where the prime denotes differentiation with respect to the Lagrangian coordinate x. The lengths of the element ds and
the sizes of the area dA before and after deformation are related as

ds∗ =

(
1 +

w

R

)
ds, dA∗

=

√
(1 + u′)2 + w′2

(
1 +

w

R

)
dA.

2.2. Equations of the tube motion

Consider fluid forces acting in the axial direction on a tube element with an undeformed area dA (Figs. 2b, 3a). After
simple algebra, for pressure and friction forces we have

−p sinϕ dA∗
= −pw′

(
1 +

w

R

)
dA, τ cosϕdA∗

= τ
(
1 + u′

) (
1 +

w

R

)
dA.

The force resulting from elastic tensile stress (Fig. 3a) is expressed as follows:

F (x + dx) cos(ϕ + dϕ) − F (x) cosϕ =

(
σ1h∗(1 + w/R)√

′ 2 ′2
(1 + u′)

)′

dA,

(1 + u ) + w
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here F = σ1h∗ds∗ and σ1 is the longitudinal physical component of Cauchy stress. Here we assumed a uniform
distribution of stresses over the tube thickness, which corresponds to the membrane model.

Balancing these forces with the inertial force ρ∗h∗üdA∗
= ρhüdA, where ρ is the material density, we obtain the

ongitudinal equation of motion:

ρhü = −pw′

(
1 +

w

R

)
+ τ (1 + u′)

(
1 +

w

R

)
+

(
σ1h∗(1 + w/R)√
(1 + u′)2 + w′2

(1 + u′)

)′

. (1)

Similarly, for fluid forces acting in the radial direction (Figs. 2b, 3a), we obtain

p cosϕ dA∗
= p(1 + u′)

(
1 +

w

R

)
dA, τ sinϕdA∗

= τw′

(
1 +

w

R

)
dA.

The radial force from elastic stresses is the sum of the longitudinal stress at ends x and x + dx (Fig. 3a),

F (x + dx) sin(ϕ + dϕ) − F (x) sinϕ =

(
σ1h∗(1 + w/R)

w′√
(1 + u′)2 + w′2

)′

dA,

nd the circumferential stress at ends s and s + ds (Fig. 3b),

−G(θ + dθ ) sin(dθ/2) − G(θ ) sin(dθ/2) = −σ2h∗

√
(1 + u′)2 + w′2

R
dA,

where σ2 is the circumferential physical component of the Cauchy stress.
Balancing the radial elastic and fluid forces with the inertial force ρ∗h∗dA∗ẅ = ρhdAẅ, we obtain the radial equation

of motion:

ρhẅ = p(1 + u′)
(
1 +

w

R

)
+ τw′

(
1 +

w

R

)
+(

σ1h∗(1 + w/R)
w′√

(1 + u′)2 + w′2

)′

− σ2h∗

√
(1 + u′)2 + w′2

R
. (2)

2.3. Equations of fluid motion

Next, we consider the motion of the fluid. We will assume that its rheology obeys the Ostwald–de Waele power law,
which for pure shear reads

τ 12
= µ

(
dv1

dx2

)n

nd for the general case is

τ ij
= 2µ

(√
2I2(e)

)n−1
eij, I2 =

√
eijeij, (3)

where τ ij and eij are the components of the viscous stress tensor and strain rate tensor. The special case of n = 1
corresponds to a Newtonian viscous fluid, and µ = 0 corresponds to an ideal fluid.

Assuming that the motion is slow (quasi-stationary) and that the wavelengths are large, a Poiseuille velocity distribu-
tion is established in each tube cross-section at each moment:

vx(x, r) = vf (x)
3n + 1
n + 1

(
1 −

(
r

R + w

) n+1
n
)

, (4)

where vf (x) is the average velocity in the section. Under this assumption, the Navier–Stokes equations integrated over
the cross-section give a spatially one-dimensional system of equations, as shown by Yushutin (2012). A different form of
this system was obtained by Vedeneev and Poroshina (2018); equations (2.10) and (2.11) of their paper in the present
notations have the form

∂w

∂t
+ vf

∂w

∂q
+

R + w

2
∂vf

∂q
= 0,

∂vf

∂t
+

3n + 1
2n + 1

vf
∂vf

∂q
−

2n
2n + 1

vf

R + w

∂w

∂t
+

1
ρf

∂p
∂q

+
µ

ρf

2(3n + 1)n

nn

vn
f

(R + w)n+1 = 0,
(5)

here q is the Eulerian coordinate of the tube axis.
To have both tube and fluid equations formulated in the same coordinate system, we now switch to Lagrangian

oordinates in the fluid equations (5). The transformation from Eulerian to Lagrangian coordinates is expressed as
∂ f

=
f ′

,
∂ f

= ḟ − f ′
u̇

∂q 1 + u′ ∂t 1 + u′
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t

3

T

for any function f . Substituting these into system (5), and slightly transforming the resulting equations, we obtain

ẇ + ẇu′
− w′u̇ + vf w

′
+

1
2
(R + w)v′

f = 0, (6)

ρf

(
v̇f + v̇f u′

− v′

f u̇ +
3n + 1
2n + 1

vf v
′

f −
2n

2n + 1
vf

R + w

(
ẇ + ẇu′

− w′u̇
))

+

+p′
+ µ

2(3n + 1)n

nn

vn
f

(R + w)n+1 (1 + u′) = 0. (7)

2.4. Expression for viscous friction τ

To close the system, let us obtain an expression for the viscous friction τ included in the equations of the tube motion.
For the Poiseuille velocity distribution (4), the wall friction comes only from the component τ = τrx, which is expressed
as

τ = µ

(
∂vx

∂r

)n

.

Using the distribution (4), we obtain the friction at the tube wall

τ (x, t) = µ

(
vf (x, t)

R + w(x, t)

)n (1 + 3n
n

)n

. (8)

2.5. Closed system of equations

Hereunder we will assume the incompressibility of the tube material, which excludes the deformed thickness from
Eqs. (1) and (2):

h∗
=

h√
(1 + u′)2 + w′2(1 + w/R)

. (9)

Then the system consisting of Eqs. (1), (2), (6), (7), and (8), supplemented by a hyperelastic model of the tube’s material, is
a closed system of equations based on the geometrically and physically nonlinear theory of the membrane tube (Epstein
and Johnston, 2001) and the approximate one-dimensional equations of motion of a power-law fluid derived under the
assumptions of Yushutin (2012) and Vedeneev and Poroshina (2018). Thus, this system generalises both the equations
of Epstein and Johnston (2001) by taking into account the viscosity and rheology of the fluid and the equations of Yushutin
(2012) and Vedeneev and Poroshina (2018) by taking into account the geometric and physical nonlinearity of the tube.
In particular, for n = 0 (a uniform velocity profile) and µ = 0 (an inviscid fluid), the system of equations coincides with
he system of Epstein and Johnston (2001).

. Steady-state equations

Next, we will study the possible steady states of the tube conveying fluid, by setting all time derivatives equal to zero.
hen the system consisting of Eqs. (1), (2), (6), and (7), taking into account equation (9), will take the form

− pw′

(
1 +

w

R

)
+ τ (1 + us)

(
1 +

w

R

)
+

(
σ1h

(1 + us)2 + w′2 (1 + us)
)′

= 0, (10)

p(1 + us)
(
1 +

w

R

)
+ τw′

(
1 +

w

R

)
+

(
σ1h

w′

(1 + us)2 + w′2

)′

−
σ2h

R + w
= 0, (11)

vf w
′
+

1
2
(R + w)v′

f = 0, (12)

ρf
3n + 1
2n + 1

vf v
′

f + p′
+

2τ
R + w

(1 + us) = 0, (13)

where us(x) ≡ u′(x) (the function u(x) itself is not present in the steady-state equations).

3.1. Integration of the fluid equations

Note that Eq. (12) is integrated and gives the relationship between fluid velocity and radial displacement (conservation
of fluid mass):

vf (w) = vf 0
(R + w0)2

.

(R + w)2
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ith the use of this relationship, Eq. (13) is also integrated in the absence of viscosity (generalised Bernoulli equation):

pinv(w) = p0 + ρf
3n + 1
2n + 1

v2
f 0

2

(
1 −

(
R + w0

R + w

)4
)

.

n the presence of viscosity, the pressure takes the form

p(x) = pinv(x) + f (x), f (x) = −

∫ x

x0

2τ
R + w

(1 + us)dx, (14)

here f (x) is a monotonically decreasing function reflecting viscous pressure loss.

.2. First integrals of the tube equations

Let us now consider equations (10) and (11). It is known that for an inviscid fluid, they have two first integrals (Epstein
nd Johnston, 2001; Fu and Il’ichev, 2010). Let us denote the principal (axial and circumferential) stretches:

λ1 =

√
(1 + us)2 + w′2, λ2 = 1 +

w

R
.

hen these equations can be rewritten in the form(
σ1

λ2
1
(1 + us)

)′

− p
R
h
λ2λ

′

2 +
τ

h
(1 + us)λ2 = 0, (15)(

σ1
λ′

2

λ2
1

)′

−
σ2

R2λ2
+ p

1
Rh

(1 + us)λ2 +
τ

h
λ′

2λ2 = 0, (16)

p = pinv + f , pinv = p0 + ρf
3n + 1
2n + 1

v2
f 0

2

(
1 −

(
λ20

λ2

)4
)

.

ote that hereunder, we use the notations of Epstein and Johnston (2001) for the principal stretches, which differ from
he notations of Fu and Il’ichev (2010) in that the axial and circumferential stretches are switched.

Next, we define a hyperelastic material model that for the incompressible case reads

σi = λiWi, Wi =
∂W
∂λi

, i = 1, 2,

here W (λ1, λ2) = Ŵ (λ1, λ2, (λ1λ2)−1) and Ŵ (λ1, λ2, λ3) is the strain energy function (see Fu et al., 2008 for details).
Representing the pressure in the form of the sum of ‘inviscid’ pressure pinv and the viscous pressure loss f , we integrate

quation (15) and obtain

W1

λ1
(1 + us) − p0

R
h

λ2
2

2
− ρf

R
h
3n + 1
2n + 1

v2
f 0

4
λ2
2

(
1 +

(
λ20

λ2

)4
)

= C1(x) + F (x),

C1(x) = −

∫ x

x0

τ

h
(1 + us)λ2dx, F (x) =

∫ x

x0

f
R
h
λ2λ

′

2dx.

et us consider in more detail the behaviour of F (x), integrating by parts:

F (x) =

∫
f
R
h

d
dx

(
λ2
2

2

)
dx = f

R
h

λ2
2

2
−

∫
f ′
R
h

λ2
2

2
dx =

f
R
h

λ2
2

2
+

∫
τ

h
(1 + us)λ2dx.

t is seen that the first term can be combined with p0 on the left-hand side, and the second (integral) term is cancelled
y the same term in C1(x). Finally, we get

W1

λ1
(1 + us) − p0(x)

R
h

λ2
2

2
− ρf

R
h
3n + 1
2n + 1

v2
f 0

4
λ2
2

(
1 +

(
λ20

λ2

)4
)

= C1, (17)

here C1 = const. Hence, the effect of viscous friction consists of a monotonic pressure decrease, p0(x) = p0 + f (x), due
o friction losses f (x).

To derive the other first integral, consider the sum of Eq. (15) multiplied by (1 + us) and Eq. (16) multiplied by R2λ′

2:(
σ1
2 (1 + us)

)′

(1 + us) +

(
σ1

λ′

2
2

)′

R2λ′

2 −
σ2λ

′

2
= −

τ
(1 + us)2λ2 −

τ
R2λ′2

2 λ2.

λ1 λ1 λ2 h h
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After simple algebra, the resulting equation is rewritten as

σ ′

1 − W ′
= −

τ

h
λ2
1λ2.

Integrating, we get

W − σ1 = C2(x), C2(x) =

∫ x

x1

τ

h
λ2
1λ2dx, (18)

here C2(x) is a monotonously growing function.
In the absence of friction, p0(x) = const, C2(x) = const, and expressions (17) and (18) are the first integrals. In

the presence of friction, p0(x) is a monotonously decreasing function, and C2(x) is a monotonously increasing function;
oreover, they themselves depend on the solution. Strictly speaking, expressions (17) and (18) are no longer the first

ntegrals, but we will call them so for brevity.
Both first integrals (17) and (18) have a clear physical meaning. Eq. (17) reflects the conservation of the resultant force

n the axial direction at each cross-section. Eq. (18) is the equilibrium equation of a membrane element, in projection
nto the deformed element; in particular, fluid pressure is not present in Eq. (18), because it is cancelled at the projection.
ote that the fluid friction acts separately in these equations: only through pressure losses in Eq. (17) and only through
ncreasing upstream (and decreasing downstream) traction force in Eq. (18).

.3. Non-dimensionalisation and transition to variables λ1 and λ2

We proceed to dimensionless quantities by choosing the non-deformed tube radius R as the length scale, the shear
modulus of the tube material G as the stress scale, and the fluid density ρf as the density scale. In addition, to get rid of the
factors R/h, for pressure p and friction τ we choose the scale P = Gh/R, and for the fluid speed vf the scale

√
P/ρf . Also,

we switch from the unknowns us(x) and w(x) to the principal stretches λ1(x) and λ2(x), which have the dimensionless
form

λ1 =

√
(1 + us)2 + w′2, λ2 = 1 + w.

Expressing us and w through λ1 and λ2, the first integrals can be rewritten in the form

λ′

2 = λ1

√1 −
1

W1(λ1, λ2)2

(
p0(x)

λ2
2

2
+

3n + 1
2n + 1

v2
f 0

4
λ2
2

(
1 +

(
λ20

λ2

)4
)

+ C1

)2

, (19)

W (λ1, λ2) − λ1W1(λ1, λ2) = C2(x). (20)

Expression (20) is the algebraic relationship between λ1, λ2, and x. If C2(x) is known, then from this expression we find
mplicitly λ1 = λ1(λ2, C2(x)). Substituting into Eq. (19), we obtain an ordinary differential equation for the function λ2(x).

To simplify the non-dimensional expression (8) for the friction, we introduce the Reynolds number of the power-law
luid in the definition of Metzner and Reed (1955):

Re =
ρf (R + w)nv2−n

f

µ

8nn

(3n + 1)n
.

hen the expression for dimensionless friction is written as

τ =
8v2

f

Re
. (21)

Here, both the dimensionless average velocity vf and the Reynolds–Metzner–Reed number Re are not constants; i.e. they
are functions of x.

3.4. Phase plane

To study the possible types of solutions, it is useful to increase the order of the differential equation (19) to the second
order, thus getting rid of C1, and to investigate the phase plane of the resulting equation, as in Poroshina and Vedeneev
(2018). Differentiating equation (19), we get

λ′′

2 =
λ′

1λ
′

2

λ1
−

λ1

λ′

2W1

{√
λ2
1 − λ′2

2

(
p′

0
λ2
2

2
+ λ2λ

′

2

[
p0 +

3n + 1
2n + 1

v2
f 0

2

(
1 −

(
λ20

x

)4
)])

−
λ2
1 − λ′2

2 W ′

1

}
. (22)
λ1
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o find the expression λ′

1(λ1, λ2, λ
′

2), we differentiate equation (20) to obtain

λ′

1 = λ′

2
W2 − λ1W12

λ1W11
−

C ′

2

λ1W11
,

here Wij = ∂2W/∂λi∂λj. Next, to compute W ′

1(λ1, λ2), we write

W ′

1 = W11λ
′

1 + W12λ
′

2 = λ′

2
W2 − λ1W12

λ1
−

C ′

2

λ1
+ W12λ

′

2 =
λ′

2

λ1
W2 −

C ′

2

λ1
.

Substituting these expressions into Eq. (22) and noting that the term with p′

0 is cancelled by the term −C ′

2/λ1 in the
xpansion of W ′

1, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ′
= Y ,

Y ′
= −τ

XY
W11

+ Y 2W2 − λ1W12

λ2
1W11

−

−
λ1

W1

{
X
√

λ2
1 − Y 2

(
p0(x) +

3n + 1
2n + 1

v2
f 0

2

(
1 −

(
λ20

X

)4
))

−
λ2
1 − Y 2

λ2
1

W2

}
.

(23)

where X ≡ λ2, λ1(X, x) is the function obtained by solving algebraic equation (20) for a given value of C2(x), and the axial
Lagrangian coordinate x acts as an analogue of time in a dynamic system.

4. Steady states in the case of an inviscid fluid

In this section, we set τ = 0, i.e. consider an inviscid fluid, but keep a non-constant cross-sectional velocity distribution
(4). Therefore, p0(x) = const, C2(x) = const, and, consequently, λ1 = λ1(X). We obtain the following autonomous system
of equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ′
= Y ,

Y ′
= Y 2W2 − λ1W12

λ2
1W11

−

−
λ1

W1

{
X
√

λ2
1 − Y 2

(
p0 +

3n + 1
2n + 1

v2
f 0

2

(
1 −

(
λ20

X

)4
))

−
λ2
1 − Y 2

λ2
1

W2

}
.

(24)

It can immediately be seen that for the inviscid fluid, the non-constant velocity distribution is expressed only in
he factor (3n + 1)/(2n + 1), which tends to 1 as n → 0, i.e. as the velocity distribution tends to a constant. Hence,
he effect of the cross-sectional velocity distribution consists of increasing the effective mean flow velocity by a factor
(3n + 1)/(2n + 1) compared to a constant distribution. In particular, for a regular parabolic velocity profile (n = 1), the
ffective velocity is increased by ≈ 15% with respect to the uniform profile.

.1. Phase-plane structure

As can be seen, the phase plane of Eq. (24) is symmetric about the X axis, is two-sheeted (due to the square root),
nd is defined only for |Y | < |λ1(X)|. We will call the lines Y = ±λ1(X) the limit lines: they are the transition lines
f the integral curves from one sheet of the Riemann surface to the other. It is easy to verify that the limit lines are
ntegral trajectories themselves, but the uniqueness theorem for an integral trajectory passing through a given point is
ot valid for limit lines. Physically, the points lying on the limit lines correspond to the vertical tangent to the tube surface
us = −1). In this case, the assumption of flow laminarity inside the tube is not correct: the flow will detach from the
alls and switch to a complex unsteady motion. We will call such a situation the tube’s collapse; it is obvious that the
teady state without collapse corresponds to only one sheet of the phase plane, corresponding to the positive value of
he square root. Further, we restrict ourselves to considering this sheet of the phase plane.

The stationary points of the phase plane (Xs, Ys) are determined by Ys = 0, and Xs are the roots of the equation

S(X) = −X

(
p0 +

3n + 1
2n + 1

v2
f 0

2

(
1 −

(
λ20

X

)4
))

+
W2(λ1(X), X)

λ1(X)
= 0. (25)

hey correspond to possible uniform states of an infinitely long tube. The type of stationary points is determined by the
alue of dS(Xs)/dX: for W1 > 0 (tensile axial stress in the tube wall), they are of a centre type when dS(Xs)/dX < 0 and
f a saddle type when dS(Xs)/dX > 0; for W1 < 0 (compressive axial stress), the types are reversed. The integral curves
merging from the saddle point (separatrices) and returning back to the same point correspond to standing solitary waves.
The phase plane of Eq. (24) is characterised by three parameters: p0, vf 0, and C2. The parameter C1 defines only a

pecific integral curve in the phase plane. To determine the physical meaning of these parameters, we assume that the
ube state is homogeneous as x → ±∞; i.e. all its parameters tend to constants. This far-field state is characterised
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Fig. 4. Plot of the function S(X) for λ10 = 1 and λ20 = 1.5, 1.1763, 1.15, 1.14, 1.11 (a), for λ20 = 1.5, 1.69, 1.9 (b).

y stretches λ10 and λ20. After setting these stretches, the constant C2 and, therefore, the function λ1(X) are uniquely
determined from Eq. (20). The fluid pressure p0 is expressed from the equilibrium condition using Eq. (16):

p0 =
W2(λ10, λ20)

λ10λ20
. (26)

The fluid velocity at infinity, vf 0, can be set arbitrarily.

4.2. Material model

Since further study without specification of the material model is impossible, we will consider the Gent model of
incompressible hyperelastic material (Gent, 1996; Horgan, 2015):

W (λ1, λ2) = Ŵ (λ1, λ2, (λ1λ2)−1), Ŵ (λ1, λ2, λ3) = −
1
2
GJm ln

(
1 −

λ2
1 + λ2

2 + λ2
3 − 3

Jm

)
,

with the shear modulus G = 106 Pa and Jm = 97.3 corresponding to rubber properties. By direct calculations, we find

Wi =
∂W (λ1, λ2)

∂λi
= Ga

(
λ2
i − (λ1λ2)−2) λ−1

i , i = 1, 2,

W11 =
∂W1(λ1, λ2)

∂λ1
= Ga

(
a
2λ−2

1 (λ2
1 − (λ1λ2)−2)2

Jm
+ (1 + 3λ−4

1 λ−2
2 )

)
,

W12 =
∂W1(λ1, λ2)

∂λ2
= Ga

(
a
2(λ1λ2)−1(λ2

1 − (λ1λ2)−2)(λ2
2 − (λ1λ2)−2)

Jm
+ 2(λ1λ2)−3

)
,

a =

(
1 −

λ2
1 + λ2

2 + (λ1λ2)−2
− 3

Jm

)−1

.

As the Gent material has limited stretch that reflects the limited extensibility of molecular chains, the phase plane
is defined for those values of X ≡ λ2 for which there is at least one λ1 such that a(λ1, λ2) > 0. This gives the range
lim− < X < Xlim+, where Xlim− and Xlim+ are the positive roots of the equation X3

+ (Jm + 3)X + 2 = 0. It can be proved
hat in this range of X , Eq. (20) always has a solution λ1 = λ1(X, C2) for any real value of C2. Thus, this stretch range X
s the region of the material model’s validity and, accordingly, the region of definition of the phase plane. For Jm = 97.3,
e have Xlim− = 0.01994 and Xlim+ = 10.0050.

.3. Phase plane and solitary wave solutions in the case of a quiescent fluid

Let us first consider a phase plane with vf 0 = 0 and far-field stretches λ10 = 1 and λ20 = 1.5 (an axially unstretched
ut inflated state), which, according to Eq. (26), correspond to p0 ≈ 0.808. In this case, there are three stationary points:
s = 1.5, 1.85, and 7.35 (Fig. 4a). The first point is of the saddle type (corresponding to a homogeneous far-field state),
he second point is of the centre type, and the third point is of the saddle type. The vector field corresponding to the
hase plane is shown in Fig. 5. Hereunder, we use the following notation of stationary points: the first letter is the type
f point (c is the centre, and s is the saddle), and the second digit is the number of the stationary point; the far-field state
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Fig. 5. Vector field of system (24) and separatrices of the stationary saddle points at λ10 = 1 and λ20 = 1.5. General view (a), enlarged view in the
rea of the separatrix loop (b).

Fig. 6. Vector field of system (24) and separatrices of the stationary saddle points for λ10 = 1 and λ20 = 1.1763 (a), λ20 = 1.15 (b).

Fig. 7. Vector field of system (24) and separatrices of the stationary saddle point for λ10 = 1 and λ20 = 1.11.

lways corresponds to number 1. As can be seen, there exists a solitary wave solution: the separatrix of the saddle s1,
nveloping the centre c2 and returning to the original saddle. The solutions inside the saddle separatrix loop correspond
o periodic tube swellings; any solution outside the separatrix loop tends to X → 0 and Y → −∞ and approaches
he limit line; i.e. such solutions exist only for a finite tube length. The separatrices of the saddle s3 are not closed: the
eparatrices going to the left cross the limit line; the separatrices going to the right reach the value Xlim+, at which the
aterial reaches its stretch limit. Thus, with the parameters considered, there exists, in addition to the uniform state, the
nly standing solitary wave in the form of a localised tube swelling.
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Fig. 8. Vector field of system (24) and separatrices of the stationary saddle points for λ10 = 1 and λ20 = 1.9. General view (a), enlarged view in
he area of the separatrix loop (b). The vertical dashed line is the singularity of the vector field W1(X) = 0.

Fig. 9. Plot W1(λ1(X), X) for λ20 = 1.5, 1.7, 1.9, 2.1.

Reducing stretch λ20 causes the centre c2 and saddle s3 to come closer together (Fig. 4a). The solitary wave solution
isappears at λ20 ≈ 1.1763, when the separatrix of the first saddle s1 becomes the separatrix of the saddle s3 (Fig. 6a),
nd the solitary wave transforms into a kink. With a further decrease in λ20, the initial swelling solitary wave disappears,

but a standing necking solitary wave (corresponding to a much more inflated far-field state) appears, in which the left
separatrix of the saddle s3 goes around the centre c2 (Fig. 6b). For λ20 ≈ 1.14, the saddle s3 and the centre merge (Fig. 4a),
and the amplitude of the necking solitary wave tends to zero, after which there remains the only stationary point, the
saddle s1, corresponding to the original far-field state. Obviously, for lower values of λ20 solitary wave solutions do not
exist (Fig. 7).

Let us now consider a change in the phase plane with an increased λ20 from 1.5 and higher. The saddle point s1,
corresponding to the uniform state, moves to the right, and the centre c2 moves to the left; for λ20 = 1.69, they pass
through each other (Fig. 4b). For λ20 > 1.69, the type of stationary points changes: the saddle point s1 becomes the
centre c1, and the centre c2 becomes the saddle s2. In this case, the solitary wave solution now corresponds to a less
inflated far-field tube state (Fig. 8), while for the original far-field state, there remains only the uniform-tube solution.
The parameter range in which there exists a family of standing swelling solitary waves for a quiescent fluid was first
obtained by Pearce and Fu (2010).

Another bifurcation of the phase plane occurs at λ20 = 1.73. In this case, a range of X appears for which W1(λ1(X), X) <

0 (Fig. 9); i.e. the region in which the axial stress becomes compressive. In this range, the vector field (24) turns around,
and at the points at which W1 = 0, it has a singularity (note that W11(λ1(X), X) is always positive; i.e. there are only
singularities associated with zero longitudinal stress). Thus, solutions starting in the region W1 > 0 cannot penetrate the
area left of the line W1 = 0 but end on the limit line (Fig. 8). With a further increase in λ20, the range in which W1 < 0
expands and captures the saddle s2, which then again becomes the centre c2 (Fig. 10). There are no standing solitary
wave solutions.
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Fig. 10. Vector field of system (24) and integral trajectories enveloping the centres for λ10 = 1 and λ20 = 2.1. The vertical dashed line is the
singularity of the vector field W1(X) = 0.

Fig. 11. Plot of the function S(X) at λ10 = 1, λ20 = 1.5, and vf 0 = 0.4, 0.58, 0.64, 1.0 (a), enlarged view in the region of small X (b). The arrows
show the direction of movement of the roots with increasing vf 0 .

4.4. Phase plane and solitary waves in the case of a moving fluid

To be specific, we put n = 0 (a uniform fluid velocity distribution); as noted above, other values of n yield rescaling
of vf 0, but the qualitative picture will obviously remain the same. With far-field parameters λ10 = 1, λ20 = 1.5, and
f 0 < 0.0624, the structure of the phase plane is the same as for a quiescent fluid. For vf 0 ≥ 0.0624, in addition to the
hree stationary points, two more points appear in the vicinity of X = 0.038: the centre c4 and the saddle s5. As the fluid
velocity increases, the saddle moves to the left and, for vf 0 > 0.37, leaves the phase plane through the left boundary;
e will not consider it further. The centre moves to the right (Fig. 11) and is located to the left of the saddle s1, which
orresponds to the far-field state. Due to the presence of a centre, the vector field turns around for small X (Fig. 12): if
for vf 0 = 0 it was directed downwards, now it is directed upwards, and there are closed trajectories enveloping a new
stationary centre.

There are two standing solitary waves simultaneously emerging from the saddle s1 corresponding to the uniform
state: the localised swelling in which the separatrix loop envelops the right centre c2 and the localised necking in which
it envelops the left centre c4 (Fig. 12). Both solutions are shown in Fig. 13 as functions λ2(x).

An increase in the flow velocity vf 0 leads to changes in the phase plane, as with an increase in λ20 for the quiescent
luid. Namely, the right centre c2 moves to the left, and at vf 0 ≈ 0.58, it merges and passes through the saddle s1, which
corresponds to a homogeneous state (Fig. 11). Then the types of both stationary points are reversed. The swelling and
necking solitary waves still exist, but their conditions at infinity correspond to a smaller λ20 than in the original far-field
state (Fig. 14a).

At vf 0 ≈ 0.64, the two left stationary points, the saddle s2 and the centre c4, approach, merge, and disappear (Fig. 11).
For larger values of the velocity, two stationary points remain: the centre c1, which corresponds to the far-field state
(Fig. 14b), and the saddle s3, which corresponds to much larger stretches; no standing solitary wave solutions exist. With
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Fig. 12. Vector field of system (24) and separatrices of the stationary saddle points for λ10 = 1, λ20 = 1.5, and vf 0 = 0.4. General view (a), enlarged
iew in the area of the separatrix loops (b).

Fig. 13. Swelling (a) and necking (b) solitary waves λ2(x) for λ10 = 1, λ20 = 1.5, and vf 0 = 0.4.

Fig. 14. Vector field of system (24) and separatrices of the stationary saddle points for λ10 = 1, λ20 = 1.5, and vf 0 = 0.63 (a), vf 0 = 1.0 (b).

n increase in speed, the saddle s3 gradually moves to the right, and for vf 0 > 9, it leaves the phase plane through its
ight boundary. At higher speeds, the only stationary point remains, the centre c1.

. Steady states in the case of a viscous fluid

As can be seen from system (23), for τ ̸= 0 the vector field becomes non-symmetric with respect to the X axis
ue to the term −τXY/W11. For the Gent model W11 > 0; therefore, each centre point becomes a stable focus; each
addle point remains a saddle, but its separatrices rotate somewhat clockwise. In addition, the values of p0 and C2, which
ere associated with the tube state at infinity for an inviscid fluid, become non-constant in the viscous case: p (x) is
0
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decreasing function, C2(x) is a growing function, and therefore λ1 = λ1(X, x). Note that the functions p0(x) and C2(x)
themselves depend on the solution; i.e. system (23), strictly speaking, is not a system of differential equations. Parameters
λ20 and vf 0, which also corresponded to the tube state at infinity for the case of an inviscid fluid, can now refer to any tube
cross-section. The stationary points of the phase plane, i.e. the solutions of Eq. (25), now also depend on x. The motion
of the integral curve can be represented as the motion along the vector field, which itself changes with x; moreover, for
each solution the vector field changes in its own way.

5.1. Stretch limit states as x → ±∞

First, consider possible deformed steady states, i.e. λ1 and λ2 independent from x as x → ±∞. In this case, we have

p0(x) = −2τ
λ1

λ2
x = −Px, P = 2τ

λ1

λ2
> 0 C2(x) = τλ2

1λ2x.

The constants in p0(x) and C2(x) for large values of |x| can be neglected.
Consider the solution of Eq. (20) for the Gent material model (Section 4.2):

W − λ1W1 =
1
2
GJm ln a − Ga

(
λ2
1 − (λ1λ2)−2)

= C2(x) = τλ2
1λ2x.

bviously, this equation can be satisfied as x → ±∞ only if a(x) ∼ Ax → ∞ with A = const, i.e.

a−1
= 1 −

λ2
1 + λ2

2 + (λ1λ2)−2
− 3

Jm
→ 0. (27)

Neglecting the first term (ln a ≪ a), we obtain

A = −
τ

G
λ2
1λ2

(
λ2
1 − (λ1λ2)−2)−1

.

ince a > 0, it is also necessary that the following inequalities are satisfied:

λ2
1 − (λ1λ2)−2 < 0, x → +∞; λ2

1 − (λ1λ2)−2 > 0, x → −∞. (28)

Expression (27) gives the relationship between the possible limit values of λ1 and λ2. The limit value of W2 has the form

W2 = Ga
(
λ2
2 − (λ1λ2)−2) λ−1

2 = Bx, B = −τλ2
1
λ2
2 − (λ1λ2)−2

λ2
1 − (λ1λ2)−2

.

Next, consider equation (25) as x → ±∞. Leaving only the leading terms, we have

−Pλ2x −
Bx
λ1

= 0 ⇒ 2 =
λ2
2 − (λ1λ2)−2

λ2
1 − (λ1λ2)−2

. (29)

Let us prove that there always exist unique limit states satisfying equations (27) and (29) and inequalities (28). Rewrite
hem, denoting λ2

1 = l1 and λ2
2 = l2:

l21l2 + l1l22 − (3 + Jm)l1l2 + 1 = 0, (30)

2(1 − l21l2) = 1 − l1l22, (31)

1 − l1l22 > 0, x → +∞; 1 − l1l22 < 0, x → −∞. (32)

qs. (30) and (31) are equivalent to the system

l1l2(l1 + l2 − (3 + Jm)) = −1 = l1l2(l2 − 2l1).

rom here we obtain

l1 =
3 + Jm

3
, l2 = l1 ±

√
l21 −

1
l1

.

s l1 > 1, the value of l2 is always real and positive.
It is easy to verify that the ‘plus’ sign before the root satisfies inequality (32) as x → −∞ and the ‘minus’ sign as

→ +∞. As x → −∞, the tube is swollen and axially stretched (λ1 > 1, λ2 > 1): far upstream, the stretched state tends
to the limit state, and the tensile stresses tend to infinity. In this case, the axial stress in the tube wall σ1 is balanced
by the fluid viscous force, which axially stretches the tube sections lying upstream, and the circumferential stress σ2 is
balanced by pressure, which grows unlimitedly upstream. As x → +∞, the tube is also axially stretched but compressed
in the circumferential direction (λ1 > 1, λ2 < 1). In this case, both axial and circumferential stresses are compressive
and tend to infinity. The axial stress σ1 downstream is balanced by the viscous force, which compresses the tube axially,
and the circumferential stress σ is balanced by pressure, which decreases unlimitedly due to viscous losses. We note
2
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that the limit states do not depend neither on the fluid properties nor on the values of the constants but depend only on
parameter Jm of the tube material.

By direct calculation, taking into account equation (29) and a large value of a, it can be proved that for both limit states
dS/dX > 0, which means that the limit stationary point of a ‘frozen’ vector field at large |x| is saddle point as x → −∞

and stable focus point as x → +∞.
For Jm = 97.3, which corresponds to rubber, we have limit axial stretch λ1 = 5.782156, and limit circumferential

stretches λ2 = 0.021149 as x → +∞ and λ2 = 8.177176 as x → −∞.

5.2. Evolution of the tube when moving from infinity

Let us now investigate the possibility of combining limit states as x → −∞ and x → +∞ by a single integral curve,
i.e. constructing a steady solution for the entire infinitely long tube conveying a viscous fluid. To do this, we divide the
tube into three sections. Two sections are neighbourhoods of infinities as x → −∞ and x → +∞, where the limit
stationary points continuously move when x changes, but they remain the only stationary points of the phase plane (or,
if other stationary points appear, they do not interact with the limit stationary point). The third section is the central
section, where new stationary points appear and can interact with stationary points that came from neighbourhoods of
infinity. In a certain cross-section of the central segment, we put the origin of the x axis, and specify stretches λ1 = λ10
and λ2 = λ0 and fluid velocity vf 0. We do not specify pressure in this cross-section; below we will show that there is only
one pressure value that provides the existence of a solution for −∞ < x < ∞. In this section, we study the behaviour of
integral trajectories with a motion of limit stationary points.

5.2.1. Evolution of the tube as x → −∞

First, consider the limit saddle point as x → −∞. As the absolute value of x decreases, the value of Xs corresponding to
this stationary point decreases; in the central part of the tube, this saddle continuously passes to the left saddle s3 in Fig. 5.
It is easy to see from the local structure of the vector field in the vicinity of the moving saddle that there always exists an
integral curve, which for each x is located near the moving saddle point and does not ‘fall’ onto the separatrix leaving it.
Moreover, for x → −∞, such an integral curve tends to the limit position of the saddle (a limit state of the tube). Thus,
the moving saddle ‘leads’ such an integral curve. When the saddle moves to the left, the integral curve follows below it;
the lower the curve the higher the speed of the saddle. When the saddle moves to the right, the integral trajectory, on
the contrary, follows the saddle above it.

The existence of an integral trajectory following the moving saddle can also be seen from the explicit solution of the
model problem

X ′′
+ 2cX ′

= A(X − X0(x)), A > 0, c > 0,

where X0(x) is the variable position of the saddle and X(x) is an unknown function. The solution of this equation has the
form

X(x) = X0(x) +

+e−cx
(

1
2
√

~

(∫ x

x0

e−
√

~ξβ(ξ )dξe
√

~x
−

∫ x

x0

e
√

~ξβ(ξ )dξe−
√

~x
)

+ c1e
√

~x
+ c2e−

√
~x
)

,

~ = A + c2, β(x) = (−X ′′

0 − 2cX ′

0)e
cx.

It is easy to see that if the saddle position has moved along a finite segment x from one fixed position to another (in this
ase, β(x) ̸= 0 only on a finite segment x, and the integrals tend to constants as x → +∞), then there exists a solution
hat asymptotically tends to the initial state as x → −∞ and to the final state as x → +∞.

Thus, before reaching the central section of the tube, where the interaction of the stationary points occurs, there exists
n integral trajectory coming from −∞ following the saddle.

.2.2. Evolution of the tube as x → +∞

Now consider the integral trajectory following from x → +∞ to the central section. It will be shown below that it is
ecessary that in the central part of the tube the stationary point continuously passes to the right saddle s1 in Fig. 5. For
uch a continuous evolution, it is necessary that during the motion from x → +∞, no new stationary point emerges. If
uch a point arises (it must be a focus that in the inviscid case corresponds to the centre c4 in Fig. 12), it will separate
wo stationary points: the analogues of the right saddle s1 in Fig. 12 and the saddle point s5 lying near the left boundary
f the phase plane and corresponding to the limit state at x → +∞. A continuous transition of one stationary point
o another with a change in x takes place only for sufficiently small vf 0, for which there is no ‘intermediate’ stationary
oint. In particular, the calculation shows that for λ1(0) = λ10 = 1, λ2(0) = λ20 = 1.5, and the initial condition p0(0)
efined by the equilibrium condition in inviscid flow (26), the transition to x → +∞ occurs without the formation of an
ntermediate stationary point for vf 0 ≤ 0.0635, which is close to the value at which the intermediate stationary point is
bsent for x = 0 (Section 4.4).
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Fig. 15. Phase plane of the ‘frozen’ equation (33) for x = −0.5 (a) and x = 0.5 (b). The arrow shows the direction of the stationary point’s motion
ith increasing x.

Below, we will assume that this condition is satisfied; otherwise, as will be shown below, it is impossible to connect
he limit states of the tube as x → ±∞.

The limit stationary point for x → +∞ is a stable focus. It is easy to see from the structure of the vector field that
hen the focus moves, there is a trajectory that remains in its vicinity and rotates around it; when the focus movement
tops, the trajectory asymptotically tends to it. As a result, as in the case of a saddle at x → −∞, there is an integral
rajectory ‘following’ the focus motion.

The existence of such a trajectory is also evident from the explicit solution of the model problem

X ′′
+ 2cX ′

= −B(X − X0(x)), B > 0, c > 0,

here X0(x) is the variable focus position and X(x) is an unknown function. The solution of this equation has the form

X(x) = X0(x) +

+
e−cx

√
δ

(∫
cos(

√
δξ )β(ξ )dx sin(

√
δx) −

∫
sin(

√
δξ )β(ξ )dx cos(

√
δx)
)

+

+c1 cos(
√

δx)e−cx
+ c2 sin(

√
δx)e−cx, δ = B − c2.

It is seen that if the location of the focus tends to a constant as x → ∞, then all the trajectories, including those coming
ut of the vicinity of its initial position, asymptotically approach its final position.
Hereunder we will assume that the central section of the tube, where we must connect the trajectory coming out from

→ −∞ and going to x → +∞, is inflated: for the inviscid case, there are several stationary points, and there exist
tanding solitary waves. Then the axial stress in the central section is tensile so that W1 > 0. However, it was shown above
that as x → +∞, the axial stress is compressive, i.e. W1 < 0, which means that there is a point Xc at which W1 = 0; along
the vertical line X = Xc the vector field (23) has a singularity. In addition, when passing through a singularity, the type
of the stationary point changes: a saddle becomes a focus and vice versa. Only one integral trajectory passes through the
singularity line; all other trajectories end at the limit line Y = λ1(X, x). Namely, when a stationary point passes through
a line of zero axial stress below the stationary point, the vectors are horizontal. If we follow the vector field at a distance
from the stationary point at which the length of the horizontal vector is equal to the stationary point’s speed, a smooth
passage through the singularity is ensured; all other integral trajectories turn up or down before the singularity and end
at the limit line.

The following model equation is an illustration of the transition through a singularity:

X ′′
= A

X + x
X

. (33)

The equation’s stationary point is a saddle for x < 0 and a centre for x > 0. The vector fields for x = −0.5 and x = 0.5
are shown in Fig. 15. Its exact solution X(x) = −x for each x corresponds to a stationary point; on the phase plane, due
to the motion of the stationary point, the integral trajectory moves under it along the line Y = −1. Any other solution,
starting from x < 0, cannot penetrate the line X = 0 and remains to its right, turning up or down before this line.

It is important that this unique trajectory corresponds to the transition to x → +∞ only when the point Xc at which
the change in sign of W1 takes place is unique. If there are more such points, then it is impossible to have a trajectory
penetrating several singularities: the condition of passing through the first one selects a single integral curve that can
no longer, except for special cases, pass through other singularities. Further, we will assume that point Xc is unique. For
the parameters λ1(0) = λ10 = 1 and λ2(0) = λ20 = 1.5 and the initial condition p0(0) determined from Eq. (26), the
ransition to x → +∞ occurs with a single Xc for vf 0 ≤ 0.0565. In particular, this condition is satisfied in the example
constructed below in Section 5.4.
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Fig. 16. Transition in the central part of the tube from the vicinity of the stationary point as x → −∞ to the neighbourhood of the stationary point
as x → +∞ for the initial (x = 0) parameters λ10 = 1, λ20 = 1.5, vf 0 = 0.05, and p0 ≈ 0.484. The integral curve in the phase plane (the vector
field corresponds to the state at x = 0, the arrows show the direction of motion of the stationary points with increasing x) (a); plot λ2(x) (b).

Note that for fluid velocities exceeding the critical values (at which either an intermediate stationary point or more
than one Xc appear) and for realistic values of fluid viscosity, the inability to continue the trajectory as x → +∞ arises
at sufficiently large values of x, exceeding hundreds or thousands of tube radii. As a result, although it is mathematically
impossible to continue the solution to infinity, the region of its existence exceeds any lengths of tubes conveying fluid
that are encountered in applications.

5.3. Connection of integral trajectories from infinities in the central part of the tube

Thus, from both left and right infinities, at a sufficiently low speed vf 0, it is possible to continue an integral trajectory
to the central region of the tube, where both stationary points are saddles. Expecting solutions with a solitary wave form,
we will assume that in the central part, the structure of the ‘frozen’ phase plane qualitatively corresponds to Fig. 5 (except
that the centre c2 becomes a stable focus). When increasing x (moving downstream), the focus and the right saddle merge
and disappear; when decreasing x (moving upstream), the focus and the left saddle merge and disappear; in both cases,
there is a homoclinic bifurcation of the vector field. The remaining saddle evolves into a limit state, as shown in the
previous section.

For such a configuration, in which at a certain x a stable focus exists between the two saddles, it is impossible to
transform the limit saddles into each other with a change in x. However, under certain conditions, there is an integral
trajectory connecting the saddles and bypassing the focus from below. More precisely, from the vicinity of the right saddle
with increasing x, the integral trajectory comes into the vicinity of the left saddle. For this, it is necessary that the focus
is located between the saddles in such a way that the integral trajectory from the neighbourhood of one stationary point
comes into the neighbourhood of the other (Fig. 16). To realise such a configuration, there are two free parameters in
the problem, since the pressure p0 and C2 are defined to within a constant. In the absence of viscosity, these constants
are determined by the parameters at infinity, but in the presence of viscosity, these constants can be chosen arbitrarily,
since both pressure and C2 tend to infinity at x → ∞. Only one of these parameters is essentially arbitrary, since their
simultaneous change in a certain combination corresponds only to a shift in the origin of the x axis (or, equivalently, a
shift of the entire tube to the left or to the right). Thus, due to this one free parameter, e.g. pressure, it is possible to locate
the focus so that the integral trajectories for x → −∞ and x → +∞ are connected in the central part of the tube with
a focus bypass from below.

Small changes in pressure will lead to small changes in the integral trajectory, up to the moment of intersection with
the singularity (the line of change in the sign of W1, i.e. a change of tensile longitudinal stress to compressive stress). As
shown in Section 5.2.2, there is only one trajectory that penetrates this singularity, while the other trajectories on the
phase plane turn up or down and end at the limit line. Thus, the parameter (e.g. pressure) has the only value at which
the integral trajectory passes through the singularity. After that, the trajectory moves in an uncontrolled way. However,
since it moves in the vicinity of a stable focus (which moves to the left with increasing x), it does not leave its vicinity
and asymptotically tends to the limit state as x → +∞.

Now we can explain why it is necessary that during the evolution of a stationary point as x → +∞, an intermediate
stationary point should not occur (Section 5.2.2). As in the central tube section, at a certain position of the three stationary
points, it would be possible to connect the two outer points by passing the middle point from below (unlike in the central
part, here the saddles and focuses are switched if the interaction occurs at W1 < 0; however, this does not preclude
the possibility of their connection by an integral trajectory). To do this, the middle stationary point must be located
between the outer points in such a position that the trajectory from the neighbourhood of the right point comes into the
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Fig. 17. Plot S(X) (a) and phase plane and integral curve in the absence of viscosity (b) for the parameters λ1(0) = λ10 = 1, λ2(0) = λ20 = 1.5,
vf 0 = 0.05, and p0 ≈ 0.477.

Fig. 18. The calculated evolution of the position of the stationary point to infinity for x < 0 (a) and for x > 12 (b) for the initial (x = 0) parameters
10 = 1, λ20 = 1.5, vf 0 = 0.05, and p0 ≈ 0.484. The dashed lines are the limit values.

eighbourhood of the left point. However, we do not have other free parameters to organise such a connection. Therefore,
he only way to continue the trajectory to x → +∞ is to prevent the occurrence of the focus, which is ensured by the
equirement that the fluid velocity in the central tube segment is sufficiently small: vf 0 < vf 0cr. The only special case
ay be a fluid velocity vf 0 > vf 0cr such that the desired location of the stationary points occurs simultaneously with
enetration of the singularity; however, this exceptional case is not of general interest, since it cannot be realised in
eality: an arbitrarily small deviation from this value vf 0 will lead to the end of the trajectory at the limit line and the
ube’s collapse.

.4. An example of a solution for an infinitely long tube

Consider an example of a solution for an infinitely long tube. The calculations were performed numerically, separately
or the central tube section and the neighbourhoods of infinity. In the central region, the full differential equation (19)
as solved by the Euler method taking into account the algebraic relation (20). The calculation took into account the
hange in p0(x) and C2(x) according to formulas (14) and (18) (in dimensionless form). The values of the integrals were
pdated at each x-step by the rectangle method simultaneously with the numerical integration of Eq. (19).
In the vicinity of infinities, the numerical integration of the full problem is practically impossible, because the integral

rajectories tend to ‘fall’ onto the separatrices coming out of the saddles and, therefore, are extremely sensitive to the
nitial conditions. For example, to keep the trajectory near a stationary point at a distance of ∼ 1 tube radius, an accuracy
f setting the initial conditions of ∼ 10−6 is required; and the required accuracy increases exponentially with increasing
ube length. Thus, although a solution remaining in the vicinity of the saddle exists, it is almost impossible to obtain it
umerically on a long x-interval. To calculate the evolution of the position of the stationary points, it was assumed that
heir motion is rather slow and that the derivative λ′

2 in Eq. (19) can be neglected. Then, replacing it by zero, this equation
ecomes algebraic; it was solved numerically for given values of p (x) and C (x). A segment of the x axis of a sufficiently
0 2
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Fig. 19. Solitary-wave-like solutions for an infinitely long tube as x → −∞ (a, b) and for an infinitely long tube as x → +∞ (c, d). The integral
trajectory on the phase plane (the vector field corresponds to x = 0) (a, c), and the solution λ2(x) (b, d) are shown.

large length (directed either to +∞ or −∞) was divided into a sufficiently fine grid, along which the integrals p0(x) and
C2(x) and, accordingly, the position of the stationary point λ2(x) changed. Although this approach is approximate, it yields
a rather accurate calculation of the stationary points’ motion, because outside the central section they move slowly; for
x → ±∞ their positions tend to fixed values, while the speed of motion λ′

2(x) tends to zero.
In the calculations, for simplicity, the power-law index n = 0 was taken; however, it is clear that for any other value,

the solution will be qualitatively the same. Since the fluid friction in this case is constant, formula (21) can be rewritten
as follows: τ = 8v2

f 0/Re0, where the index ‘0’ corresponds to an initial section of the tube. In the calculations, the initial
Reynolds–Metzner–Read number Re0 = 100 was set.

We set the parameters λ1(0) = λ10 = 1, λ2(0) = λ20 = 1.5, and vf 0 = 0.05 and selected a pressure p0 = 0.477 so that
the focus of the ‘frozen’ vector field is located between two saddles, which have common separatrices (Fig. 17). We take
this position for x = 0 and consider this value to be the left border of the central tube section. However, due to viscosity,
the vector field shown in Fig. 17 will evolve: the right saddle and centre approach each other, while the left saddle moves
to the left. Therefore, taking into account viscosity, the integral trajectory at this initial value p0 will come to the right
of the neighbourhood of the left saddle, and a pressure correction is necessary. Calculations show that for p0 ≈ 0.484,
the trajectory, taking into account viscosity, comes into the vicinity of the left saddle (Fig. 16). Thus, this and very similar
initial pressure values provide the connection of the neighbourhoods of the stationary points that come from infinity by
a single integral curve.

The numerically calculated motion of the stationary points when moving to infinity for x < 0 and x > 12 is shown in
Fig. 18. As can be seen, they are continuously moving to their asymptotic values. Note that at x ≈ 580, the value of W1(x)
becomes negative and then retains its sign for an unlimited increase in x; at the change in sign, the stationary point’s
location is X ≈ 1.13. Since after changing the sign, the saddle becomes a stable focus, the monotonic decrease in X(x) is
replaced by an oscillatory motion.

In dimensional terms, taking a ratio h/R = 0.1, the shear modulus of rubber G = 106 Pa, and a fluid density
ρf = 1000 kg/m3, the constructed solution corresponds to a fluid velocity vf 0 = 0.5 m/s and a pressure p0 = 48.4 kPa.
A Reynolds number Re = 100 corresponds to a fluid friction τ = 20 Pa.

5.5. Existence of solitary-wave-like solutions

The solution constructed above corresponds to a monotonic downstream change from the inflated limit state to the
compressed limit state of the tube. Let us show that a solitary wave solution, i.e. a solution enveloping focus, does not
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xist. It can be seen from the calculations that, with an increase in x in the central part of the tube, the focus moves to
he right, and both saddles move to the left. Suppose that p0(0) is chosen so that the trajectory, starting from the vicinity
f the right saddle point, just does not reach the left saddle point and makes one revolution around the focus point.
owever, due to the movement of the focus to the right, and the movement of the right saddle to the left, the position of
he trajectory after the revolution will be above the right saddle. The trajectory will then follow the upper right separatrix
o the boundary of the phase plane, where the tube will collapse.

Thus, solutions in the form of a standing solitary wave, i.e. with a single local swelling or necking of the tube, do not
xist for an infinitely long tube. However, they exist for a semi-infinite tube. For a tube that is unbounded as x → −∞,
n example is given in the previous paragraph; it is possible to select p0(0) and a final value x > 0 to make one revolution
round the focus; as a result, we have a necking solitary wave. For a tube that is unbounded as x → +∞, we can choose
0(0) and start the path above the initial position of the upper right separatrix of the left saddle, after which it continues
ndefinitely as x → +∞. The result is a swelling solitary wave. Both examples of solitary waves at semi-infinite tubes
re shown in Fig. 19.
Obviously, for a tube of finite length, there are solutions that monotonically connect two states and make a certain

umber of revolutions around the focus (but always a finite number because sooner or later the focus will disappear from
he phase plane due to the influence of viscosity), each revolution corresponding to swelling or necking of the tube.

. Conclusions

In this paper, we analysed the possible steady states of an elastic tube made of an incompressible hyperelastic
ent material (rubber), conveying a viscous fluid with power-law rheology. It is proved that for a quiescent fluid (or,
quivalently, if a constant pressure is set in the tube) in a tube that is axially unstretched at infinity (λ10 = 1), a standing
olitary wave in the form of a localised swelling exists for a range of far-field circumferential stretches 1.18 < λ20 < 1.69.
his result was previously obtained by Pearce and Fu (2010).
In the case of the motion of an inviscid fluid (generally, with a non-uniform cross-sectional velocity distribution) for

10 = 1, λ20 = 1.5, and a dimensionless velocity 0.063 ≤ vf 0 ≤ 0.58, there exists, simultaneously with the standing
welling solitary wave, a standing necking solitary wave. At a lower fluid velocity, there is only a swelling solitary wave;
or larger velocities, no solitary waves exist. Note that in a model of a geometrically and physically linear tube, in which
nly the nonlinearity of the flow was taken into account (Poroshina and Vedeneev, 2018), there always exists, for any
onzero flow velocity, only a standing necking solitary wave. Thus, both the existence of a standing swelling solitary
ave and the limited range of fluid velocities for which a standing necking solitary wave exists are consequences of the
hysical and geometrical nonlinearities of the tube model.
When a viscous fluid moves, there are limit stretch states of the tube as x → −∞ and x → +∞, with the stretches λ1

nd λ2 tending to constants but the stresses tending to infinities to compensate for the fluid pressure and the longitudinal
tress caused by the fluid viscosity, which are infinitely growing upstream and infinitely decreasing downstream. The
ransition between these limit states occurs in the central section of the tube and exists only if the fluid velocity is
ufficiently small. In this case, for given stretches λ1 and λ2 and flow speed vf in a chosen cross-section, there is a unique
olution linking the states at infinity in the form of a monotonic decrease in the radius downstream, i.e. a kink-like
olution. Localised swelling or necking solutions for a tube that is infinitely long in both directions do not exist. However,
uch solutions exist if the tube is infinitely long in only one direction, either downstream or upstream. But solutions in
hich a semi-infinite tube has multiple neckings or swellings do not exist. For finite-length tubes, there exist ‘pieces’ of
oth swelling and necking solitary waves, as well as close-to-solitary-wave solutions with a finite number of successive
wellings or neckings.
The principal point of constructing a solution in an infinitely long tube conveying a viscous fluid is the existence

f a limited material stretch that reflects the limited extensibility of polymeric molecular chains, which is a principal
eature of Gent material (Gent, 1996; Horgan, 2015). For other conventional hyperelastic models, such as Ogden material,
here is no limited stretch so that the tube will infinitely swell upstream and narrow downstream. However, for realistic
luid viscosity, the difference in the tube’s limit behaviour will manifest itself at thousands of diameters upstream and
ownstream from the central segment so that for practical applications, the results of the present study can be transferred
o other hyperelastic rubber models without any changes.

Finally, we note that the stability of the obtained solutions is not analysed in this study, and this could be a topic of a
eparate investigation.
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