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ABSTRACT

Experimental studies of the stability of the collapsible tubes conveying fluid have been previously conducted in the context of cardiovascular
mechanics mostly for turbulent flows, although blood flows are laminar under normal conditions. In this paper, the turbulent and laminar
regimes with equal flow rates and pressure drops are investigated experimentally to identify the stability boundary and self-exciting oscilla-
tion modes of Penrose tubes conveying fluid in the Starling resistor. Four oscillation modes for laminar and for turbulent regimes were
observed visually and by measuring the pressure drop and the output pressure. Comparison of amplitudes, frequencies, and boundaries
between different oscillation modes for equivalent laminar and turbulent flow regimes is performed.
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I. INTRODUCTION

The interaction of the blood flow with vessels and the possible
loss of stability in this hydroelastic system are important problems of
cardiovascular mechanics. Several physiological examples of blood ves-
sel collapse were discussed by Shapiro,1,2 Kamm and Shapiro,3

Pedley,4 Pedley et al.,5 Koshev et al.,6 such as the collapse due to
hydrostatic reduction of the transmural pressure, i.e., the difference
between internal and external vessel pressures. We refer the interested
reader to Grotberg and Jensen,7 Bertram,8 and Heil and Hazel9 for an
overview of theoretical and experimental studies of the collapsible
tubes conveying fluid.

The one-dimensional model is the most common method for the
theoretical study of the blood flow in vessels (Refs. 10–19). Although
in many cases, it is sufficient to study integral properties of the “wall-
fluid” system (e.g., Refs. 20 and 21) to analyze various instabilities, a
number of authors use two-dimensional (Refs. 22–26) or three-
dimensional models of the fluid flow through elastic tubes to get a
more detailed description of the instability mechanisms (Refs. 27–30).

The classical experimental apparatus used to examine properties of
blood vessel models is the Starling resistor (Ref. 31) The complex fluid–
structure interaction during vibrations leads to various types of instabil-
ities with low, intermediate, and high frequencies (Ref. 32) which result
in a reduction of the flow rate and increase of the pressure drop.

Since vascular walls in biological systems are soft and deformable
(Refs. 7, 33, and 34) it is convenient to utilize latex (silastic) rubber

and Penrose drainage tubes to model blood vessels as initially sug-
gested by Gavriely et al.35 and Brower and Noordergraaf,36 respec-
tively. Gavriely et al.35 measured the pressure-flow relationships by
gradually increasing the pressure drop along the tube. They observed
loud honking sounds and oscillations of the tube that occur only when
the flow rate becomes constant and independent of downstream driv-
ing pressure. Also, the oscillatory frequencies are higher at larger flow
velocities and in the case of narrower distances between opposing flat-
tened walls. Bertram and Castles37 investigated the flow rate limitation
of the thick-walled silicone-rubber tubes conveying water and it was
found that the flow rate depends not only on the upstream transmural
pressure but also on its history, in a hysteretic manner. Later, Bertram
and Elliott38 conducted experiments with thin-walled tubes to study
the effect of wall thickness. As in a thick tube, there is a dramatic
reduction of the flow rate when a collapse and the flow limitation start,
but there is only a slight increase in the flow rate when the tube recov-
ers the circular shape.

Wang et al.39 identified the connection between the flow rate and
its limitation and pressure P at the point of collapse initiation for vari-
ous inner diameters, lengths, and thicknesses of the tube. Two flow
limitation modes were found: in the first, the flexible tube retains a cir-
cular shape for P < Pa and it starts to oscillate at P � Pa; in the sec-
ond mode, the flexible tube also retains a circular shape at P < Pa, but
it collapses in a static manner for P > Pa until the oscillations start at
a higher pressure.
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Most of these studies were conducted only for turbulent flows
meaning that the flow rate limitation manifests when the fluid flow is
not laminar anymore. Although turbulence does occur in stenotic ves-
sels due to a strong increase in the linear velocity of blood flow, the
presence of turbulence is limited to the ventricles of the heart, aortic
ostium, and aortic arch, while the blood flow is laminar in other parts
of the cardiovascular system. Consequently, a study of the effect of
flow regime on the onset and character of oscillations of the model
blood vessel is of great interest.

However, there are just a few studies on the effect of flow viscos-
ity and flow regime on stability. Lyon et al.40 studied the applicability
of the theoretical waterfall model (Refs. 41 and 42) and the onset of
oscillations in the Starling resistor for different fluid viscosities. The
paper presented for the first time the pressure-flow relationships for a
collapsible tube with low Reynolds number flow corresponding to
laminar flows. Experiments showed that the pressure-flow relation-
ships for low Reynolds number flows are distinctly different from
those for moderate Reynolds number flows. The effect of fluid viscos-
ity was also examined by Bertram and Tscherry.43 They conducted
experiments on collapsible tubes for laminar regimes with the lowest
possible Reynolds numbers. The goal of that study was to provide
experimental data for the validation of three-dimensional DNS codes,
which are limited to sufficiently small Reynolds numbers. Zayko and
Vedeneev44 experimentally studied the influence of flow regime on the
limit cycle oscillations of latex thin-walled tube and showed that the
oscillation frequency more essentially depends on the pressure drop in
the tube for a fixed flow rate at laminar regimes, while the oscillation
amplitude is larger for the turbulent regimes. However, in those
experiments, the rigid tube before the collapsible segment was not suf-
ficiently long to reach developed laminar or turbulent flow. A recent
experimental study45 investigates the effect of non-Newtonian fluid
properties on steady flow in a collapsible tube.

It is seen from the literature review that there is some discrepancy
between most of experimental studies with collapsible tubes, where the
flow was turbulent, and biomechanical applications, where the flow is
laminar. The aim of the present study is to highlight this gap and to
analyze experimentally the effect of the fluid flow regime on the stabil-
ity boundary and on the limit cycle oscillations of a thin-walled col-
lapsible tube conveying fluid.

Let us consider the friction coefficient of a rigid tube as a function
of Reynolds number (Fig. 1). It is seen that there is a range of laminar
and turbulent regimes with equal friction coefficients. These regimes
correspond to different Reynolds numbers and, for the same fluid, to
different average velocities. Hence, dimensional pressure drops are not
equal, which would lead to different shapes of an elastic tube.
However, it is possible to take different fluids such that their Reynolds
numbers will correspond to Rel and Ret, see Fig. 1, with equal pressure
drops and the same average velocity. In result, these flows will be
equivalent in their integral properties, and the only difference will be
the regime, laminar, or turbulent. To organize such equivalent flows
for a given flow rate, we use water and glycerin solutions that provide
equal pressure drop and transmural pressure, which guarantees the
similarity of the tube shapes. We then compare the results for the tur-
bulent flow of water and the laminar flow of a glycerin solution in the
same collapsible tube, which are equal in all integral parameters.

The paper is organized as follows: In Sec. II, we describe the
apparatus used in experiments, calculate the glycerin concentration

that yields integral flow characteristics equal to water flow, and analyze
flow properties in an elastic tube. In Sec. III, we present the results of
experiments, both for the stability boundary and for the characteristics
of oscillations. Section IV is devoted to qualitative theoretical explana-
tion and discussion of observed results. Finally, Sec. V summarizes the
results and concludes the paper.

II. EXPERIMENTAL METHODS AND PROCEDURES
A. Experimental apparatus

The experimental study was conducted on the installation for the
recirculation of fluid through the elastic tube shown in Fig. 2. The
apparatus consists of a thin-walled Penrose tube that is mounted
between two rigid tubes of the same diameter and placed in the cham-
ber, of a drain and a base tanks, a pump, a flowmeter, differential pres-
sure sensors, and two cameras. External pressure pe in the chamber is
constant. The tube with the unstretched diameter of 10mm (as speci-
fied by the manufacturer; the actual value will be provided in Sec. II E),
wall thickness of 0.36 0.02mm, Young’s modulus of 1.13MPa and
with the length of 0.44 m is stretched axially by 16%. Tube samples
were regularly changed: either each 45min of continuous operation,
or after each change of the working fluid. In all regimes, experimental
results were not affected by a particular tube specimen. The chamber,
whose dimensions are 100� 40� 50 cm (length, height, and width),
is made of glass and is filled with water to prevent sagging of the tube.
The pump is controlled automatically by the fluid level sensor in the
drain tank.

The inlet section consists of a tap shown in Fig. 2, followed by a
rigid tube with 15mm diameter and 0.5 m length; next, garden hose of
17.5mm diameter and 2 m length that connects the first rigid tube
with the next one, of 15mm diameter and 1 m length; next, a smooth
confuser,�0:1 m in length, which decreases radius from 15 to 10mm,
followed by a rigid tube of 10mm diameter (the same as of an elastic
tube) of 1 m length. This system of tubes provides developed laminar
and turbulent flows in all experiments conducted: the hydrodynamic
entrance length was not exceeding 1 m for laminar and 0.19 m for tur-
bulent flows in all studied regimes. The rigid outlet section consists of
a rigid tube of the same diameter as the elastic tube of 0.4 m length, a
smooth diffuser, a rigid tube of 15mm diameter and 0.35 m length,
and a garden drain hose of 17.5mm diameter and 5 m length. Both

FIG. 1. Friction coefficient f of a flow in a rigid tube as a function of Reynolds
number.
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hose segments are much stiffer than the Penrose tube and can be con-
sidered rigid.

The working fluid flows in a closed circuit. The fluid is pumped
into the base tank and sinks due to the action of gravity through the
elastic tube. Next, the working fluid flows through the drain hose into
the drain tank, closing the cycle. Since the base tank is located at a
height of 12 m above the test section, the change in the fluid level in
the base tank has a negligible effect on the flow rate Q, which is con-
trolled by the tap. That is why unsteadiness caused by the pump oper-
ation does not affect the flow and measurements in the test section.

Given the pressure difference at the tap of the order of 1.2 atm
(produced by the hydrostatic pressure of 12 m fluid column) and rela-
tively small flow rates considered in this study, the tap was just slightly
open so that it was effectively a reflection point for all perturbations
coming out upstream from the collapsible segment. For perturbations
moving downstream, the reflection point was at the open end of the
drain hose.

B. Measurement system

The average flow rate Q is measured by the ultrasonic flowmeter
Karat 520 with relative measurement error 1%. The pressure drop
Dp ¼ p1 � p2 (upstream pressure is p1 and downstream is p2) in the
tube is changed by the flow rate Q or downstream pressure p2. In its
turn, the downstream pressure p2 is changed by the position of the
drain hose. Two differential pressure sensors, BD sensors DMD 331
and Korund-DDN-001M, with working pressure ranges 100 and
10 kPa and measurement errors 500 and 100Pa, respectively, record
the instantaneous pressure drop between the inlet and outlet sections
of the tube (one sensor was used for larger and the other for smaller
pressure drops). Another pair of differential pressure sensors records
the difference between outlet pressure p2 and atmospheric pressure pa.
The distance from the elastic tube to the pressure p1 sampling point is
0.5 m and to the pressure p2 sampling point is 0.3 m. Pressure sam-
pling points and pressure gauges are connected by the tubes, and
hence, only average values of pressure differences are measured

quantitatively correct, whereas instantaneous values (denoted hereun-
der by a prime: p01; p

0
2) are distorted by those tubes and retain only

their qualitative properties, such as frequency and number of
“aftershocks” after the collapse of the tube. Steady pressure drop in the
rigid tube between each sampling point and the collapsible segment
was subtracted from pressure gauge indications to get the pressure
drop and outlet pressure right in the collapsible segment. Transmural
pressure p2 � pe can be controlled either by p2 or by pe. External pres-
sure pe can be changed by the level of water in the chamber; however,
in all our tests, it was 0.09 m above the tubes, and pe ¼ pa þ 883 Pa so
that transmural pressure was changed by p2 only.

To visualize the oscillation modes of a tube, two cameras were
used that were located above and on the side of the tube.

To verify the apparatus and the gauges operation, first, a section
of a rigid tube was inserted instead of the elastic tube. All sensors have
been calibrated on the apparatus with the rigid tube. The friction coef-
ficients for different Reynolds numbers for the laminar and turbulent
flow regimes were measured. Water was used as a working fluid in a
turbulent regime and a glycerin solution of 33% mass concentration in
a laminar regime. Good agreement between experimental data and
classical theoretical curves (Fig. 3) was obtained in both regimes for
the rigid tube case.

C. Selection of the working fluid and operating mass
flow range

As stated in Sec. I, the goal of this study is to isolate and to study
the effect of the flow regime on the stability boundary and the tube
oscillations. We organize two flows with the same flow rate: a turbu-
lent flow of water and a laminar flow of the glycerin solution, which
provide equal pressure differences p1 � p2 and p2 � pe. Since we use
identical tubes, these two flows are equivalent in terms of the flow rate,
pressures, and tube shapes and differ in the flow regime inside of the
tube. As seen from Fig. 1, this condition can be only met if a specific
relationship between the flow rate and the viscosity of the glycerin

FIG. 2. Apparatus for investigations of sta-
bility and self-exciting oscillations of elastic
tubes conveying fluid.
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solution is fulfilled, i.e., for each flow rate we should utilize a different
solution. This section establishes this relationship.

Let us denote the laminar flow by index “l” and the turbulent
flow by index “t.” Assume that the average velocities vav and pressure
drops Dp are the same for laminar and turbulent flows. We express
the value of the pressure drop through the friction coefficient for pipe
flow defined as

f ¼ Dp
1
2
qv2av

D
L
; (1)

whereD and L are the tube diameter and length.
To determine the turbulent friction coefficient in the elastic tube,

a series of preliminary experiments was conducted for turbulent
regimes. Water was used as a working fluid. The Reynolds number Re
was within the range of 4000–8000. The experimental friction coeffi-
cient in the elastic tube is shown in Fig. 4 (points). The theoretical fric-
tion coefficient for a rigid tube shown in the same figure is calculated
according to the empirical formulas of Blasius46 and Filonenko,47

fBl ¼
0:3164
Re0:25

; fF ¼ ð1:82 log ðReÞ � 1:64Þ�2: (2)

It is seen that the friction coefficient for the case of the elastic
tube is quite different from that for the rigid tube. This is consistent
with the previously studied effect of elastic properties on the laminar-
turbulent transition and friction coefficients: Verma and Kumaran48

demonstrated that the change in transition (compared to rigid tubes)
is not due to a slow change in the tube diameter, but associated with
the wall elasticity. This was shown by fabricating a harder polydime-
thylsiloxane (PDMS) gel tube with the same shape as the soft deform-
able gel tube and demonstrating that the transition in the rigid gel tube
is similar to that in a cylindrical tube. Later, Neelamegam and
Shankar49 demonstrated the effect of elasticity on deformable tubes
made of polydimethylsiloxane gels of different shear moduli. In these
studies, friction coefficient measured for turbulent flow in elastic tube
was essentially larger than in a rigid tube, which is in accordance with
our observations. In what follows, we use power law approximation
ft ¼ 30:822=Re0:762 of our experimental data.

Equating the value for the pressure drop for turbulent and lami-
nar flows, taking into account that the experimentally obtained friction
coefficient for laminar flow in elastic tube is in reasonable correlation
with the rigid tube case, fl ¼ 64=Re (Fig. 5), and expressing the aver-
age speed in terms of the flow rate, we obtain

Q ¼ pD
4

64�lql

30:822qt�
0:762
t

� � 1
0:238

: (3)

Given that the viscosity and density of the glycerin solution at a
temperature of 20 �C are known functions of the concentration, for-
mula (3) determines the required viscosity (concentration) of the glyc-
erin hydrous solution for each flow rate thus ensuring that the
pressure drop is the same as in the corresponding turbulent flow of
water.

It is also necessary that the flow rate (3) corresponds to turbulent
range of Reynolds numbers for the case of water and to laminar range
for the case of glycerin solution, i.e.,

Qt < Q < Ql: (4)

The flow rate function has the form

FIG. 3. Experimental data (points) of the flow friction coefficient f in the rigid tube
as a function of Reynolds number for laminar and turbulent flows. Curves corre-
spond to laminar 64=Re and turbulent Blasius laws.

FIG. 4. Friction coefficient as a function of Reynolds number for turbulent flows.
Curves fBl and fF are the Blasius and Filonenko empirical formulas for a rigid tube,
respectively; ft is the approximation of the present experimental data for elastic
tube.

FIG. 5. Friction coefficient as a function of Reynolds number for laminar fluid flows
with different viscosity in elastic tube.
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Ql;t ¼
Rel;t�l;tpD

4
;

where the value Ret¼ 4000 was taken as minimum Reynolds number
that guarantees developed turbulent regimes and Rel¼ 1800 was taken
as maximum Reynolds number that guarantees laminar flow. Flow
rate (3) vs the concentration of glycerin solution is shown in Fig. 6.
We find that the flow rate range from 1.9 to 3.2 l/min and the mass
concentration of glycerin hydrous solution from 40% to 44% at a tem-
perature of 20 �C are the necessary conditions for the equivalence of
laminar and turbulent flow that is met in our experiments.

To guarantee constant fluid properties during each test, the tem-
perature and viscosity of glycerin hydrous solution were checked
before, during, and after the experiments with each solution. It was
found that the characteristics of the solution changed insignificantly
during the experiments. Moreover, when switching to the next fluid, at
least 4 full recirculation cycles (complete transfer of the fluid from the
drain tank to the base tank and flow back through the tube) were run
to fully mix the solution and secure its properties.

D. Measure of equivalence of the laminar
and turbulent flow

As seen from the previous subsection, the equivalence between
laminar and turbulent flows takes place, for each glycerin solution,
only for one certain value of the flow rate. For any other flow rate,
flow regimes are not exactly equivalent, because their friction coeffi-
cients obey different laws. Hence, the problem analyzed in this
study—isolation of the flow regime effect—in the general sense is not
solvable in principle: there are no fluids that will be equivalent in a
range of flow rates or pressure differences and correspond to different
flow regimes (one to laminar and the other to turbulent). That is why
we should choose a certain flow rate and certain pressure differences,
for which the flows will be equivalent. Given that friction coefficients
can be firmly established only for a steady flow in a circular tube, it is
natural to choose these parameters in the stable state of the tube, but
close to the stability boundary. In this case, we have two flows, one of
which loses stability close to the equivalence point, but the other stays
stable longer, which fulfills the goal of this study in the sense of stabil-
ity boundary.

However, for postcritical oscillation regimes, the exact equiva-
lence does not exist a priori. When comparing them, we assume

equivalence not in the sense of friction coefficients, but in the sense of
two “equivalent” dynamical systems. Namely, we have two collapsible
tubes that differ at a certain flow rate and pressure drop (where the
tubes are stable) only by the flow regime. Assuming the equivalence at
this certain point to be an equivalence of the dynamical systems, we
then compare and analyze their postcritical behavior at other flow
rates and pressure drops. Surprisingly, as will be shown below, post-
critical oscillation modes at laminar and turbulent flows correspond to
close pressure drops, which is an unexpected experimental result. This
is why we can consider these regimes as approximately equivalent.

E. Tube diameter

Since the tube made of elastic material is used in the experiments,
its diameter varies depending on the transmural pressure. A series of
experiments was done to determine the elastic tube diameter for differ-
ent values of the outlet pressure. The diameter was measured by a
hand caliper. Measures were taken near the inlet, middle, and outlet
sections, and in all cases, the diameter was nearly constant. This means
that the tube constriction due to viscous loss was negligible for the
considered range of flow rates. Experimental points with RMS devia-
tion 0.000 19 m due to different samples of elastic tubes and due to
measurement errors under various flow conditions were approximated
by a linear relation D ¼ 2� 10�7ðp2 � peÞ þ 0:0094 (Fig. 7).

III. RESULTS
A. Typical oscillation regimes

When the average pressure drop Dp ¼ p1 � p2 is increased while
maintaining a constant flow rate Q, the stability is lost by passing
through a certain critical value Dpcr and the tube starts to oscillate.
Static instability preceding flutter was either not detected, or (for small
flow rates) had a negligible range of pressure drops so that it can be
neglected in further considerations. The observed oscillation mode is
unique for each mean pressure drop and flow rate, no matter if the
regime was obtained by increasing or decreasing the mean pressure
drop or flow rate, and without any reaction to manual perturbations
of the tube.

Four modes of oscillations were identified in experiments; resulting
plots of instantaneous pressure drops Dp0 are shown in Figs. 8(a)–8(d).
One pronounced peak is present in all modes of oscillations and it corre-
sponds to a sharp increase and following decrease in the pressure drop

FIG. 6. Flow rate (3) as a function of the glycerin hydrous solution concentration;
segment satisfying (4) is shown in bold. FIG. 7. Tube diameter as a function of transmural pressure.
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associated with the primary collapse of the tube. After this dominant
peak, there are four, three, two, or one small peak in the pressure drop
for the fourth [Fig. 8(a)], third [Fig. 8(b)], second [Fig. 8(c)], and first
[Fig. 8(d)] mode of oscillation, respectively.

B. Instability of the elastic tube with turbulent flow
inside

First, experiments are conducted at the turbulent flow regime for
the flow rate Q from 2.2 to 4 l/min with a step of 0.2 l/min; water is used
as the working fluid. The downstream pressure p2 is changed by the
positioning of the drain hose outlet, whereas the upstream pressure p1
remains almost unchanged at the fixed flow rate. In result, the average
pressure drop gradually rises until the onset of oscillation, i.e., loss of sta-
bility; next, a sharp jump in average pressure drop occurs and oscilla-
tions in the form of the third mode begin. With a further increase in the
average pressure drop, the regions of the oscillation modes previously
identified in Sec. IIIA are observed: the third mode is followed by the
second, and then, for a larger average pressure drop, by the first mode.

Regions of oscillation modes described above are shown in Fig. 9.
Alternatively, the range of vibration modes can also be distinguished
by the transmural pressure p2 � pe plotted vs the flow rate, Fig. 10,
with the exception of the stability and oscillations in the third mode
that occupy the same range of transmural pressures.

C. Instability of the elastic tube with laminar flow
inside

Experiments in the case of a laminar flow regime are conducted
similarly as in the case of a turbulent regime; the emphasis is made on

identifying the effect of viscosity. Water solutions of glycerin with a
percentage of 42%, 43%, and 44% are used as the working fluid, and
the flow rate varies from 2.3 to 2.7 l/min.

After the loss of stability, a small jump in the average pressure
drop occurs and oscillations in the form of the fourth mode start.
After the next jump in average pressure drop, the oscillations are
switched to the third mode with a further increase in average pres-
sure drop. Then oscillations pass to the second mode, and then to
the first mode with successive increases in the average pressure
drop.

FIG. 8. Four oscillation modes observed
by differential pressure readings: the
fourth (a), the third (b), the second (c),
and the first (d) mode. Dotted lines show
a single oscillation period.

FIG. 9. Average pressure drop as a function of flow rate for turbulent flow; dashed
lines roughly separate different oscillation modes.
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The division into regions by oscillation modes is shown in
Fig. 11. It is seen that a small change in viscosity does not affect the
transition boundary between the oscillation modes.

As well as for turbulent flow, the ranges of oscillation modes can
also be distinguished by the transmural pressure p2 � pe plotted vs the
flow rate, Fig. 12. However, it is hard to separate the region of stability
and the fourth oscillation mode by p2 � pe measurements only. Note
that the fourth mode of oscillation is typical only for laminar flows
and is not observed in turbulent flows. Moreover, it is seen that in
terms of average pressure drop Dp, the transition from stability to the
oscillations occurs smoother in the laminar flow due to the appearance
of the fourth mode of oscillation.

D. Comparison of laminar and turbulent flows

Figure 13 shows detailed comparison of stability boundaries at
laminar and turbulent regimes (error bars are associated with uncer-
tainties of the pressure gauge and flow meter). It is seen that the stabil-
ity loss in the turbulent flow regime occurs at a lower average pressure
drop than in the laminar flow, i.e., the laminar flow is more stable.
According to the map of oscillation modes shown in Fig. 14, after the
loss of stability, there is a sharp increase in the average pressure drop

in the turbulent regime, and oscillations of the third mode are
observed. At the same time, the oscillations of the elastic tube with
laminar flow inside occur in the fourth mode and only with a further
increase in average pressure drop, move to the third mode.

The third oscillation mode takes place at roughly the same aver-
age pressure drops in both regimes. The oscillations move to the sec-
ond mode with a further increase in the average pressure drop, and
the transition from the third to the second mode occurs at almost the
same average pressure drops for turbulent and laminar flows.
However, the difference in the transition to the first mode is more pro-
nounced: at turbulent regimes, it occurs at a lower average pressure
drop than at the laminar regime.

Let us now compare the oscillation frequencies for the laminar and
turbulent flows. The frequency spectrum of each measured time sample
was processed and a dominant frequency (related to the period of oscil-
lations) was extracted. The resulting values were extrapolated to make
the frequency color map shown in Figs. 15 and 16. The tube oscillates
with a frequency in the range of 0:9–1:4; 1:35–1:5; 1:4–1:95Hz
(Fig. 15), at the third, second, and first modes, respectively, for the tur-
bulent flow. For the same modes at laminar flow, the frequency ranges
are 1:0–1:25; 1:25–1:50; 1:5–2:50Hz (Fig. 16). For the fourth mode
that exists only at the laminar flow, the frequency range is 0:5–1:0Hz.
Hence, in the laminar flow, the frequency increase due to the increase in
the average pressure drop Dp is more significant than in the turbulent
flow.

Finally, consider the amplitude of oscillations. Based on the pres-
sure drop shown in Fig. 17 (and similar measurements), we conclude
that the oscillation amplitude for a turbulent flow is higher than for a

FIG. 10. Average transmural pressure as a function of flow rate for turbulent flow.

FIG. 11. Average pressure drop as a function of flow rate for laminar flows; dashed
lines roughly separate different oscillation modes.

FIG. 12. Average transmural pressure as a function of flow rate for laminar flows.

FIG. 13. Average pressure drop as a function of flow rate at the stability boundary;
trend lines are shown by dashed lines.
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laminar flow for all oscillation modes. Recall that although the tran-
sient signal can be distorted by tubes connecting pressure sampling
points and pressure gauges, qualitative relations remain unchanged.
Larger amplitude at turbulent regimes implies higher degree of the
tube collapse; this will be confirmed below by the tube visualization. It
is interesting to note this difference in the oscillation amplitude even
for quite close average pressure drops. Consequently, even for the
observed approximate equivalence of the oscillation modes in the
sense of average pressure drop (although exact equivalence is not pos-
sible, as was mentioned in Sec. IID), the peak amplitude and, hence,
oscillation modes, are different.

E. Visualization of instability modes for laminar and
turbulent flow

Synchronous video recording of the top and side views was con-
ducted by two cameras indicated in Fig. 2 to compare the vibration
modes of the elastic tube.

Observation of top-view pictures [Figs. 18(b), 18(d), 19(b), 19(d),
20(b), and 20(d)] shows that the tube cross section in the collapsed
state has a shape of a dumbbell. The maximum tube compression dur-
ing an oscillation cycle increases with a sequential transition from the
third oscillation mode to the second and reaches maximum collapse at
the first mode in both turbulent and laminar regimes. It is seen that
the collapsed segment is longer and smoother in the laminar regime

(Figs. 18(c), 18(d), 19(c), 19(d), 20(c), and 20(d)] and it is shorter and
sharper in the turbulent regime (Figs. 18(a), 18(b), 19(a), 19(b), 20(a),
and 20(b)] for all oscillation modes. Hence, the tube is more collapsed
at the turbulent regime, which is in consistence with the higher ampli-
tude of pressure waves discussed above.

IV. DISCUSSION

As a result of experimental observations, two conclusions can be
made as follows:

1. For the case of laminar flows, the instability occurs for larger
pressure drops, i.e., laminar steady flow in collapsible tube is
more stable than turbulent.

2. After the loss of stability, the amplitude of oscillations is larger
for the turbulent flows than for the laminar; also, the second and
subsequent pressure peaks in each cycle of oscillations are more
pronounced for the turbulent flows.

FIG. 14. Average pressure drop as a
function of flow rate for turbulent (a), lami-
nar (b) flow and corresponding maps of
the regimes.

FIG. 15. The oscillation frequencies for the turbulent (a) flows. Color map corre-
sponds to dominant frequency (Hz).

FIG. 16. The oscillation frequencies for laminar flows. Color map corresponds to
dominant frequency (Hz).
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The first conclusion can be explained theoretically. First, consider
a laminar, more stable than turbulent, flow at its stable state (round
tube, steady Poiseuille flow). The stability is lost when small deviations
of the tube diameter yield the pressure deviation that cannot be sus-
tained by the tube, which then loses axisymmetry, collapses, and the
flow detaches from the tube walls. The conditions for the instability
are more favorable, when the pressure decrease caused by a small
decrease in the diameter is larger, i.e., for larger value of dp/dD. Taken

into account that the inlet pressure and the diameter are given by the
upstream rigid segment of the tube, this condition can be reformulated
as follows: the instability will onset earlier for larger value of
dðgradpÞ=dD, where gradp ¼ Dp=L is the pressure gradient (positive
gradient corresponds to the pressure decrease downstream). Let us
now calculate this derivative for laminar and turbulent flows.

Consider three steady flows: laminar flow, turbulent flow in the
rigid tube, and turbulent flow in the elastic tube (recall that laminar

FIG. 17. Instantaneous pressure drop as
a function of time for oscillations in the
third, second, and first modes for turbulent
(a), (c), and (e) and laminar (b), (d), and
(f) flow.

FIG. 18. Instantaneous tube deformation
during the third oscillation mode for (a) tur-
bulent flow, side view, (b) turbulent flow,
top view, (c) laminar flow, side view, (d)
laminar flow, top view.

FIG. 19. Tube deformation during the sec-
ond oscillation mode for (a) turbulent flow,
side view, (b) turbulent flow, top view, (c)
laminar flow, side view, (d) laminar flow,
top view.
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flow in rigid and elastic tubes has the same friction coefficient
f ¼ 64=Re), which corresponds to the same flow rate, pressure gradi-
ent, and tube diameter. For the local pressure gradient, we have

gradpðDÞ ¼ f ðReÞqv
2

2D
; Re ¼ ReðDÞ ¼ vðDÞD

�
;

v ¼ vðDÞ ¼ 4Q
pD2

;

and friction coefficient for laminar flow (l), turbulent flow in the rigid
tube (Bl), and turbulent flow in the elastic tube (t) are (Sec. II B)

flðReÞ ¼
64
Re
; fBlðReÞ ¼

0:3164
Re0:25

ftðReÞ ¼
30:822
Re0:762

:

Consider a small deviation of the tube diameter in the collapsible seg-
ment for the unchanged flow rateQ. By direct calculation, we find

dðgradpÞ
dD

����
l

¼ �4 qlv
2

2
fl
D2
;

dðgradpÞ
dD

����
Bl

¼ � 19
4

qtv
2

2
fBl
D2
;

dðgradpÞ
dD

����
t

¼ �4:238 qtv
2

2
ft
D2
:

Due to the equal steady pressure drop, ql fl ¼ qt fBl ¼ qt ft ;
consequently,

dðgradpÞ
dD

����
l

¼ 16
19

dðgradpÞ
dD

����
Bl

;

dðgradpÞ
dD

����
l

¼ 0:944
dðgradpÞ

dD

����
t

;

(5)

which means that small decrease in the tube diameter yields smaller
pressure decrease for laminar, rather than for turbulent flow, both for
rigid and elastic tube. Therefore, laminar flow is more stable, which is
fully confirmed by experimental observations.

It is well known that in experimental studies of collapsible tubes,
the oscillations are driven not only by the collapsible segment but also
by the apparatus itself, because flow perturbations move both
upstream (and reflect from the tap) and downstream (and reflect from
the drain hose outlet); also, partial reflections are possible from points
of the diameter change. The natural question is whether our

conclusions are apparatus-dependent? It is clear that the conclusion 1
is not: the stability boundary itself is not related to oscillations formed
after the loss of stability, and the simple theoretical explanation given
above does not involve the apparatus. More care is needed for the con-
clusion 2. We expect that the difference in oscillation amplitudes
(which are larger at turbulent flow conditions) does not depend on the
apparatus, because the dominant collapse (loss of the stability by the
tube and flow detachment) occurs extremely fast—much faster than
any perturbation can reach any reflection point; hence, the peak
amplitude is governed by the collapsed segment and not by the appa-
ratus. Consequently, the two principal conclusions obtained in this
study are rather general.

What the apparatus partially drives is the oscillation frequencies
and sequence of oscillation modes, because each cycle of oscillations
involves reflections of perturbations from the tap and outlet of the
drain hose. However, the difference between oscillation frequency at
laminar and turbulent flows demonstrated at our apparatus will in
general retain at a different setup. Hence, we can reformulate this
frequency-related conclusion in a “weak,” apparatus-independent
form: frequency oscillations and oscillation modes are different for
laminar and turbulent flows.

V. CONCLUSIONS

In this study, we compared the stability boundary and oscillation
modes of collapsible tubes conveying fluids at laminar and turbulent
regimes at the conditions of equal average flow rate, pressure drop,
transmural pressure, and steady tube geometry. Theoretical consider-
ations show that in order to obtain laminar regimes equivalent to tur-
bulent flows of water, a flow rate between 1.9 and 3.2 l/min and a
concentration of the water glycerin solutions from 40% to 44% at a
temperature of 20 �C are necessary for equal integral characteristics.

Equivalent stability experiments were done separately for water
(turbulent) and water glycerin solution (laminar) flows. After the loss
of stability, we identified four oscillation modes, which correspond, at
each oscillation cycle, to one strong peak of the pressure drop, followed
by one, two, three, or four additional peaks of smaller amplitude.

It was found that the stability loss of the steady turbulent flow
regime occurs at a lower pressure drop than in the steady laminar
flow; this result was explained theoretically and does not depend on

FIG. 20. Tube deformation during the first
oscillation mode for (a) turbulent flow, side
view, (b) turbulent flow, top view, (c) lami-
nar flow, side view, (d) laminar flow, top
view.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 064104 (2021); doi: 10.1063/5.0050745 33, 064104-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


the particular apparatus used in this study. When crossing the stability
boundary at the turbulent regime, the third oscillation mode is realized
accompanied by a sharp increase in the average pressure drop. After
crossing the stability boundary at the laminar regime, oscillations
occur in the fourth mode and switch to the third mode with a further
increase in the average pressure drop. The average pressure drops at
the third oscillation mode and the boundary between the third and
second modes for turbulent and laminar flows are close. However,
with a further increase in the average pressure drop, the transition to
the first mode at the turbulent regime occurs at a lower average pres-
sure drop than for the laminar. Although the sequence of oscillation
modes is valid, strictly speaking, only at our particular apparatus, the
difference in the sequence, as well as in oscillation frequency, between
laminar and turbulent flows, may occur at a different setup. We have
also observed that the amplitude of oscillations is larger at turbulent
regimes; given that the amplitude (which reflects the degree of the
tube collapse) is driven only by the collapsible segment, we expect that
this result will be valid at any collapsible-tube setup.

The results of this study show that the stability boundary and
oscillation modes of collapsible tube conveying fluid are different for
laminar and turbulent regimes, even if their integral parameters (flow
rate, pressure drop, transmural pressure, tube shape) are close. Hence,
experimental studies, which are often conducted at turbulent flow con-
ditions, and numerical models validated at turbulent regimes should
be applied to laminar physiological flows with care. Also, the flow limi-
tation caused by the collapses of the blood vessel can be different
depending on the flow regime, which can result in a difference of
blood flow circulation. Such biomechanical applications, hence, need
special experiments, where both the flow regime and (if non-
Newtonian) rheology of the fluid should be accurately reproduced.
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