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Abstract—Flutter of unmanned aircraft at hypersonic speeds is one of the understudied problems fac-
ing the designers of hypersonic vehicles. Modern methods for calculating aeroelastic stability either
solve simplified versions of real problems (for example, without taking physicochemical phenomena
into account) or require high computing power. This paper describes a methodology for calculating
the supersonic and hypersonic f lutter of an aircraft using standard engineering software and addition-
ally developed software modules. The justification of the need to refine the existing methods for cal-
culating the aircraft aeroelasticity taking into account the real geometry of the structure and with the
possibility of accounting for physicochemical processes occurring in the air during the movement of
bodies at high speed is provided. The theoretical principles of calculating aeroelastic stability taking
into account these factors are developed, and three examples of calculating the aeroelastic stability of
model objects are given.
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The flight of aerial vehicles at high speeds, including supersonic and hypersonic speeds, may be
accompanied by the phenomenon of f lutter of various structural elements of the aircraft: wings, rudders,
hull, and skin panels [1]. Current engineering methods for calculation of aeroelastic stability often use
simplified approaches: rudders and hulls are idealized as plates and cylindrical shells that are f lown over
with a zero angle of attack. In reality, the geometry of the outer contours of the body is usually more com-
plex, and states of f light include nonzero angles of attack, but these features are not taken into account in
the f lutter calculations. A specific feature of hypersonic f low is that the air after the bow shock at these
velocities is in a nonequilibrium state and the processes of dissociation and recombination of molecules
accompanied by various chemical reactions become a significant factor affecting the f low. Under such
conditions, the f lutter resistance limit should be determined with allowance for chemical reactions and
kinetic processes in the incoming air f low. Until now, these effects have remained almost unexplored and
have not been taken into account in the practice of engineering calculations.

At the same time, both Russian and foreign specialists design aerial vehicles with f light Mach numbers
M = 6–15, the outer contours of which have a complex shape, and the f low of which may be accompanied
by the abovementioned chemical transformations. To achieve high f light speeds, the design of such vehi-
cles must have a high weight perfection, which will ensure the placement of the onboard equipment and
warhead payload necessary for solving combat missions on hypersonic aircraft (HSA). The HSA struc-
tures can have thin-walled skin panels and elastic empennage; therefore, they can be susceptible to f lutter
and possible f lutter-induced damage. Calculations of the f lutter resistance limits of such vehicles based
on simplified methods can give quantitatively incorrect predictions of the stability limits [2]. Thus, it is
highly important to develop a more advanced method for calculating aeroelastic stability that would take
into account both the real geometry of the outer contours of the body and chemical transformations in air
and to create software modules and libraries on its basis for calculating f lutter in a supersonic f low.
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METHOD FOR THE CALCULATION OF AEROELASTIC STABILITY
Let us derive the system of equations of motion of an aeroelastic system in generalized coordinates from

the system of Lagrange’s differential equations of motion [3]

where L is the Lagrangian equal to the difference between the kinetic and potential energies,  denotes
nonpotential generalized forces caused by aerodynamic action, and  denotes the generalized coordinates
for which we will take the amplitudes of the expansion of the surface displacement vector of the elastic
body in terms of vibration eigenmodes (i.e., in fact, the Bubnov–Galerkin method is used).

To obtain the expressions for generalized forces, let us consider the elementary work  performed
by aerodynamic pressure on an elementary increment of generalized coordinates :

where  is the increment of the pressure vector acting on the body (viscous stresses in air are neglected),
S is the surface area of the body,  is the distribution of the displacements according in the ith
eigenmode,  is the elementary movement of the body with variation of the jth generalized coordi-
nate, and N is the number of eigenmodes considered.

It follows from the d’Alembert–Lagrange variational principle [3] that

Thus, the column vector of linearized generalized aerodynamic forces can be represented as the prod-
uct of the matrix

called the aerodynamic stiffness matrix, and the column vector of generalized coordinates. Here, P is pres-
sure perturbation caused by deformation of the body according to its jth eigenmode and  is the normal
to the body surface oriented inward into the body. Since this study considers high supersonic and hyper-
sonic velocities and relatively small objects, the characteristic time of motion of a gas particle along the
body is an order of magnitude less than the characteristic periods of vibrations of the body in eigenmodes
that are feasible to take into account in f lutter calculations (small Strouhal numbers). Therefore, the f low
can be considered quasi-stationary, and the pressure distribution depends only on the displacement, but
not on the velocity of the body surface. Thus, the aerodynamic damping matrix is neglected, which gives
slightly lower critical velocities and goes in reserve.

The expressions for the kinetic T and potential U energy of a linearly elastic body in generalized coor-
dinates have the form

which gives an expression for the Lagrangian . In these expressions, matrix  is the mass
matrix and matrix  is the matrix of structural stiffness. The Lagrange equations of motion of the body
in the matrix form will appear as follows:
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They also take into account the structural damping matrix , which can be set given known values of
the damping coefficients for each natural vibration.

The aeroelastic stability in the examples below was analyzed for the unloaded state of the structure
(zero angle of attack and zero angle of rudder deflection) by virtue of considering the motion of fairly rigid
bodies of relatively small dimensions; this, however, does not limit the generality of the method. The loads
acting on the structure from the air f low are calculated using the numerical solution of the f luid dynamics
equations (CFD). The system of the Navier–Stokes equations and energy equations for a viscous heat-
conducting gas is solved.

The continuity equation is .

The Navier–Stokes equations are , where  =  =

, the components of tensor τ are expressed as  =  , and  is the Kro-

necker delta.
The energy equation written in terms of the total enthalpy is given by

The system of equations is solved by the control volume method. The characteristics of a steady f low
are obtained by the relaxation method. In the case when chemical reactions in the f low can be neglected
(the Mach number does not exceed five), the system of equations is closed by the equation of state of a
perfect gas. If chemical reactions in air at hypersonic f light speeds are taken into account, this system of
equations is considered for a mixture of reacting components and is supplemented by a system of equa-
tions for chemical reactions [4].

Upon obtaining the equations of motion of the aeroelastic system in modal coordinates and calculating
matrix , we solve the complex eigenvalue problem. Representing u as , we find

As a result, we obtain a set of N eigenvalues λ  The stability criterion is the condition . In the
case of a real positive eigenvalue, there is divergence; in the case of a complex eigenvalue with a positive
real part, there is f lutter.

PRACTICAL IMPLEMENTATION OF THE METHOD
This paper describes a method for calculating f lutter, in which generalized aerodynamic forces are cal-

culated on the basis of the numerical simulation (CFD) of the f low of the real geometry of the structure
with allowance for the chemical reactions occurring in the air. As shown in the previous section, due to
the high f light speeds and relatively small sizes of the objects, it is assumed that the f low over the oscillat-
ing structure is quasi-stationary. The specific implementation of the method is based on the use of two
commercial software packages used in engineering practice: MSC.Nastran [5, 6] for the calculation of
eigenfrequencies and eigenmodes of a structure in a vacuum and solving the eigenvalue problem for a cou-
pled aeroelastic system and Ansys CFX [7] for solving the problem of quasi-stationary f low over a struc-
ture. Additional software modules have been developed for integrating these two software packages, cal-
culating generalized aerodynamic forces, building an aerodynamic stiffness matrix, and processing the
results.

The block diagram of the calculations is shown in Fig. 1. The vibration eigenmodes and eigenfrequen-
cies (both hull and rudder surfaces) are calculated in MSC.Nastran using the standard finite element
method (SOL 103 solver) and are transferred to the Ansys CFX fluid dynamic package by the developed
software module. The package calculates the f low over the structure upon deformation of the hull in
eigenmodes. Further, the generalized aerodynamic forces, which form the aerodynamic stiffness matrix,
are calculated using the second module developed. This matrix is transferred to MSC.Nastran for calcu-
lating the complex eigenfrequencies of vibrations of a coupled aeroelastic system (SOL 110 solver), which
is carried out using the Bubnov–Galerkin method (in Nastran terminology, in modal coordinates), which
requires a relatively small number of eigenmodes taken into account in the computation of generalized
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Fig. 1. Block diagram of the calculations. 
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aerodynamic forces. According to the theory, the criterion of instability (divergence or f lutter) is the pres-
ence of an eigenfrequency with a positive real part.

APPLICATION EXAMPLES

Three objects were investigated using the method developed, and the results were compared with the
data of field experiments.

Figures 2a and 2b show the geometry of the first object under study, an unmanned maneuverable air-
craft. All calculations for this model were carried out for f light parameters at an altitude of 25 km and
Mach number M = 5. The description of the lowest vibration eigenmodes of the model is given in Table 1
and in Fig. 3. The calculations took into account two hull eigenmodes (the first and second bending mode
with numbers 8 and 10), as well as three eigenmodes of the rudders (bending, bending-torsional, and tor-
sional modes, numbers 20, 28, and 30). It should be noted that in Table 1 several frequencies correspond
to one mode, since the corresponding eigenmode occurs on different rudders, and the small difference in
frequency values is due to the asymmetric arrangement of the onboard equipment and payload.

The calculation of complex eigenvalues in the SOL 110 MSC.Nastran module showed the absence of
flutter (Table 2).

This is evidenced by zero values of aerodynamic damping  given for all calculated physical

vibration frequencies , which are almost the same as the vibration frequencies in a vacuum.

This is due to the rather high eigenfrequencies of the rudders and the high f light altitude in the regime
considered (25 km), at which the aerodynamic effect of the f low on the rocket is small. The calculation
results are confirmed by field tests.
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π
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Fig. 2. Geometry of three computational models: (a), (b) first; (c) second; (d) third. 
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Figures 2c and 2d show the geometry of the second and third objects under study, the empennage of a

maneuverable aircraft. According to the experimental data, the use of a trapezoidal rudder (Fig. 2d)

caused no flutter in various design f light states. At the same time, replacing the trapezoidal empennage
JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY  Vol. 50  No. 4  2021

Table 1. Eigenmodes: First model

Mode Frequency, Hz Eigenmode type Mode Frequency, Hz Eigenmode type

1 0 Loose move 16 179.19 Rudder, bending 1

2 0 Loose move 17 185.07 Rudder, bending 1

3 0 Loose move 18 197.42 Rudder, bending 1

4 0 Loose move 19 201.39 Rudder, bending 1

5 0 Loose move 20 201.80 Rudder, bending 1

6 0 Loose move 21 285.09 Hull, longitudinal

7 38.98 Hull, bending 1 22 325.78 Hull, bending 3

8 38.98 Hull, bending 1 23 325.78 Hull, bending 3

9 97.79 Hull, bending 2 24 400.03 Hull, mixed

10 97.90 Hull, bending 2 25 400.03 Hull, mixed

11 117.16 Rudder, bending

in the rudder plane

26 444.81 Hull, mixed

12 122.77 Rudder, bending

in the rudder plane

27 444.81 Hull, mixed

13 123.16 Rudder, bending 

in the rudder plane

28 444.93 Rudder, torsion 1

14 124.02 Rudder, bending

in the rudder plane

29 483.48 Rudder, torsion 2

15 179.14 Rudder, bending 1 30 483.64 Rudder, torsion 2
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Fig. 3. Vibration eigenmodes of the first model. The scale is increased 15 times: (a) mode 8; (b) mode 10; (c) mode 20;
(d) mode 28; (e) mode 30. 
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Max

Min

(c)
geometry with a rectangular one (Fig. 2c) led to f lutter. The calculations based on the method proposed
in this paper confirm the experimental results. All the calculations were carried out with parameters cor-
responding to zero altitude above sea level.

The obtained vibration eigenmodes of the second model in a vacuum are shown in Fig. 4 and described
in Table 3.
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Table 2. Results of calculating eigenvalues: first model. М = 5; Н = 25 km

Mode Δ ω, Hz Mode Δ ω, Hz

1 0 0 16 0 179.19

2 0 0 17 0 185.07

3 0 0 18 0 197.42

4 0 0 19 0 201.39

5 0 0 20 0 201.83

6 0 0 21 0 285.09

7 0 38.97 22 0 325.78

8 0 38.98 23 0 325.78

9 0 97.79 24 0 400.03

10 0 97.90 25 0 400.03

11 0 117.16 26 0 444.81

12 0 122.77 27 0 444.81

13 0 123.16 28 0 444.95

14 0 124.02 29 0 483.48

15 0 179.14 30 0 483.67
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Fig. 4. Vibration eigenmodes of the second model. The scale is increased 15 times: (a)–(d) modes 1 through 4, respec-
tively. 
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Table 4 shows the results obtained from the calculations based on the method for the rectangular
empennage. The calculation was first carried out for the Mach number M = 2.5, and it was concluded that
a coupled f lutter in the second mode of vibration was present in this f light state. Further, the calculations
were carried out for M = 2 and M = 1.5 (note that, in the latter case, the assumption that the f low is quasi-
stationary is obviously wrong, and this calculation is of purely academic interest). The values obtained of
the aerodynamic damping coefficients also indicate the presence of the same type of f lutter.

Similar calculations were carried out for the trapezoidal empennage model. The obtained eigenmodes
of the model are shown in Fig. 5 and described in Table 5. The calculation first was carried out for M = 2
and then for M = 6 (Table 6). The Δ value remained equal to zero, which indicates the absence of f lutter.

CONCLUSIONS

This paper presents the theory and methodology for calculating the f lutter of aircraft structures at high
flight velocities taking into account the real geometry of the structure and the possibility of accounting for
JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY  Vol. 50  No. 4  2021

Table 3. Eigenmodes: second model

Mode Frequency, Hz Eigenmode type

1 87.40 Bending 1

2 156.97 Torsional 1

3 376.72 Bending 2

4 436.55 Plate-like
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Table 4. Results of calculating complex eigenvalues: second model. H = 0 km. Left to right: М = 2.5; М = 2; М = 1.5

Mode Δ, Hz ω, Hz Mode Δ, Hz ω, Hz Mode Δ, Hz ω, Hz

1 308 172.55 1 244 145.22 1 171 114.0

2 –308 172.55 2 –244 145.22 2 –171 114.0

3 0 375.51 3 0 386.35 3 0 378.1

4 0 432.07 4 0 424.23 4 0 408.6

Table 5. Eigenmodes: Third model

Mode Frequency, Hz Eigenmode type

1 145.20 Bending 1

2 394.85 Torsional 1

3 585.12 Bending 2

4 887.48 Torsional 2
the features of hypersonic f low (chemical transformations, viscous effects, etc.). The practical implemen-
tation of the calculation method with the use of the software modules and partial use of standard engineer-
ing software is described. Examples of calculating the f lutter of model aircraft structures are given; their
results are consistent with the experiments.
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Fig. 5. Vibration eigenmodes of the third model. The scale is increased 15 times: (a)–(d) modes 1 through 4, respectively.
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Table 6. Results of calculating complex eigenvalues: third model. Н = 0 km. Left to right: М = 2; М = 6

Mode Δ ω, Hz Mode Δ ω, Hz

1 0 168.02 1 0 254.38

2 0 389.10 2 0 409.99

3 0 593.83 3 0 606.13

4 0 880.11 4 0 888.44
This method can be applied to study the f lutter of other aircraft, as well as their structural components.
The method can be used in conjunction with other software systems, including Russian ones, by develop-
ing additional modules that provide connections between the elasticity and fluid dynamics solvers and
performing intermediate calculations.
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