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We study the development of perturbations in a submerged air jet with a round
cross-section and a long laminar region (five jet diameters) at a Reynolds number of 5400
by both inviscid linear stability theory and experiments. The theoretical analysis shows that
there are two modes of growing axisymmetric perturbations, which are generated by three
generalized inflection points of the jet’s velocity profile. To validate the results of linear
stability theory, we conduct experiments with controlled axisymmetric perturbations to the
jet. The characteristics of growing waves are obtained by visualization, thermoanemometer
measurements and correlation analysis. Experimentally measured wavelengths, growth
rates and spatial distributions of velocity fluctuations for both growing modes are in
good agreement with theoretical calculations. Therefore, it is demonstrated that small
perturbations to the laminar jet closely follow the predictions of inviscid linear stability
theory.
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1. Introduction

Many industrial technologies use jet flows: mixing (Hilgers & Boersma 2001), combustion
(Karpov, Mostinskii & Polezhaev 2005; Kozlov, Grek & Litvinenko 2016), chemical
engineering (Chorny & Zhdanov 2012), spraying (Sazhin 2014), acoustic radiation (Jordan
& Colonius 2013; Belyaev et al. 2018) and others. Optimization of such technologies,
either to accelerate transition to turbulence (for better mixing, faster spraying, etc.) or to
delay it (for longer jets, lower velocity fluctuations or more stable flames) should rely on a
proper understanding of the various routes to laminar–turbulent transition and the ability
to control them (Fiedler & Fernholz 1990; Samimy, Webb & Crawley 2018). For many
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classical shear flows, such as boundary layers and plane Poiseuille flow, different ways of
transition, especially at their linear stage, are currently well understood: there are modal
(exponential) and non-modal (algebraic) perturbation growth mechanisms. The growth
of the flow eigenmodes, i.e. Tollmien–Schlichting waves, is governed by an eigenvalue
problem for the Orr–Sommerfeld equation, which was confirmed by several quiet-flow
condition experiments for the Blasius boundary layer (Schubauer & Skramstad 1947;
Boiko et al. 1994) and plane Poiseuille (Nishioka, Iida & Ichikawa 1975; Kozlov &
Ramazanov 1981) flows. Also, the theoretical stability of infinitesimal perturbations for
round pipe flow at any Reynolds number was confirmed experimentally up to Re = 105

(Pfenniger 1961). If, on the other hand, the external conditions are not sufficiently quiet,
e.g. due to a high level of natural turbulence, then the algebraic growth of optimal
perturbations yields a ‘bypass transition’ route (Boiko et al. 2012). In accordance with
the two possible routes to transition, many ways of transition control have been proposed
that are based on intervening in the natural perturbation growth mechanisms. However, not
all wall-bounded flows are so successful in validating linear stability theory: in contrast to
the Blasius boundary layer, and plane and round Poiseuille flows, the theoretical stability
of plane Couette flow at any Re is still not validated by an experiment.

Transition to turbulence is studied much less in jet flows than in wall-bounded flows.
The theoretical analysis of the non-modal growth mechanism began in the past decade
(in contrast to more than 30 years of research on wall-bounded flows), and to the
present date it has been treated in just a few papers. Boronin, Healey & Sazhin (2013)
studied the non-modal growth of two velocity profiles (‘top-hat’ and Landau jets) of
submerged jets and two profiles of liquid-in-air jets. They were the first to show that
at Re = 1000, the energy of the optimal perturbation is two orders of magnitude larger
than that of a single mode; the maximum growth is attained at zero frequency, and the
growth of axisymmetric perturbations is smaller than that of helical perturbations. That
is, the principal features of non-modal growth are similar to those of wall-bounded flow.
These results were further confirmed by Jiménez-González, Brancher & Martínez-Bazán
(2015), who also analysed the qualitative mechanisms of growth and showed that the
non-modal growth of axisymmetric perturbations is due to the Orr mechanism, and that
the non-modal growth of helical perturbations with azimuthal wavenumber n = 1 is due
to the Orr mechanism at shorter wavelengths, and due to the lift-up mechanism (called
‘shift-up’ because this mechanism at n = 1 effectively shifts the jet) at long waves.
Also, the rapid convergence of the optimal perturbation to a long-time asymptotic for
the optimal growth derived by Ortiz & Chomaz (2011) was demonstrated. The work of
Nastro, Fontane & Joly (2020) deals with a jet developing temporally due to the nonlinear
evolution of a linear wave into a Kelvin–Helmholtz billow. This work explains earlier
experimental observations by Liepmann & Gharib (1992): during the development of
axisymmetric Kelvin–Helmholtz billows, a generation of non-axisymmetric perturbations
was observed in the braid region, which were further sucked into the upstream ring region.
Originally, it was implied that this loss of axisymmetry is the result of a secondary
instability of Kelvin–Helmholtz billows; however, a study by Nastro et al. (2020) suggests
that the non-modal growth of non-axisymmetric perturbations to temporally developing
axisymmetric Kelvin–Helmholtz billows could be responsible for that observation. To our
knowledge, there are no more studies of non-modal growth in laminar jets and no attempts
to investigate the non-modal route to transition experimentally.

Moreover, even modal stability theory has not been reliably verified in experiments with
jets. The first tests with controlled perturbations of jet flows began more than 50 years ago
by Vlasov & Ginevskii (1967), who discovered that the intensity of turbulent mixing in
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a subsonic turbulent jet can be controlled by a weak acoustic excitation. It was observed
that the excitations at low frequencies resulted in much better mixing than the excitations
at frequencies that were an order higher. Extensive development of that work in regard
to strong acoustic excitation of turbulent jets and their strong nonlinear evolution can be
found in Ginevskii, Vlasov & Karavosov (2004), Krivokorytov et al. (2014) and Kozlov
et al. (2016).

Later, based on experimental observations, Crow & Champagne (1971) introduced the
concept of the ‘jet preferred mode’, which is the evolution of a controlled perturbation
with a Strouhal number St ≈ 0.3 that yields the fastest jet breakdown. Although the jet was
turbulent, the amplitudes of the axisymmetric perturbations introduced in that experiment
were not small, and the jet’s response was essentially nonlinear so that the jet as a whole
was twisted in shape, the observed wavelengths were in good agreement with calculations
based on the eigenvalue problem for the Rayleigh equation, which was unexpected even for
the authors of that study. Zaman & Hussain (1980) further studied controlled perturbations
of a turbulent jet and suggested that there are actually two distinct preferred modes:
‘shear-layer’ and ‘jet-column’ modes. That is, they observed that the vortex pairing is
most pronounced under controlled acoustic excitations at Strouhal number St ≈ 0.85 and
brings strong growth of the centre line fluctuation intensity, which was associated with
the jet-column mode. However, Petersen & Samet (1988) argued that these two types of
the preferred mode are representations of the same mode at different distances from the
orifice. They analysed Orr–Sommerfeld equations applied to an experimental jet profile
(the same profile as in Crow & Champagne (1971)) and proved that since there is no crucial
difference between the preferred mode and shear layer instability, the preferred mode is
actually the shear-layer mode that is most amplified at a distance of four jet diameters
from the orifice.

The conclusion of Petersen & Samet (1988) that the jet-column mode is the evolution of
the shear-layer mode was later doubted by Burattini et al. (2004), because they successfully
excited the former independently from the latter. Specifically, they installed metal grids at
the orifice to suppress the initial shear layer instability. The frequency of the jet preferred
mode dominates in the spectrum only at x/D ≥ 2 when the grids are not used (in what
follows, the x-axis is directed along the jet axis and D is the jet diameter), and closer to
the orifice when the grids are installed. The frequencies of the growing perturbations are
well predicted by the inviscid linear stability theory, but the experimental growth rates
are not in agreement with these predictions. The authors explain this discrepancy by the
turbulence of the jet, given that the theory assumes laminar flow. The difference between
the jet preferred mode and the shear-layer mode was also supported in experiments by
Sadeghi & Pollard (2012). By installing a ring in the shear layer, they suppressed the
Kelvin–Helmholtz instability and the subsequent vortex pairing, but the frequency of the
jet preferred mode still exists in the fluctuation spectrum.

Arguments in support of the unity of the preferred mode were given by Garnaud et al.
(2013). They studied mean turbulent jet flow (including its spreading downstream) and,
by using resolvent analysis, considered two types of axisymmetric optimal forcing: one
through the incoming velocity profile of the pipe feeding the jet, and the other through
the volumetric momentum distribution in the feeding pipe. Both types of forcing yield a
similar optimal response, with a maximum energy gain at St = 0.46, which was associated
with the preferred mode of the turbulent jet. They showed that the optimal response
follows the most unsteady local shear-layer mode near the feeding pipe, while farther
downstream, when the shear-layer mode starts decaying, the optimal response switches
to the least stable mode, which turns out to be the local jet-column mode. This transition
theoretically explains the disagreement about the origin of the jet preferred mode and
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supports the conclusion of Petersen & Samet (1988). The question of the nature of the
preferred mode was readdressed in a recent experimental study by Mair et al. (2020), but
no definite conclusion was drawn by the authors.

Thus, currently, there is no consensus on the nature of the jet preferred mode, in both
theoretical and experimental studies. As was argued by Mair et al. (2020), this is partially a
result of attempts to apply linear stability theory, which assumes laminar flow, to turbulent
jet flows. Moreover, a numerical study by Boguslawski, Wawrzak & Tyliszczak (2019)
clearly demonstrates that the turbulent jet’s response to forced excitation depends not only
on the jet’s velocity profile, as linear stability theory predicts, but also on the combination
of incoming turbulence intensity and excitation amplitude and frequency. In all cases,
purely nonlinear mechanisms play a role in the development of perturbations in turbulent
jets; in particular, although the theoretically predicted eigenmode was successfully excited
for jet’s with a thicker shear layer (which corresponds to the results of Crow & Champagne
(1971)), for the case of a thinner shear layer, the eigenmode had a higher frequency and was
broken up by turbulent fluctuations so that the excitation did not affect the jet’s dynamics.

A somewhat different direction in recent studies is the role of linear mechanisms in
sustaining turbulence in developed turbulent jets. Although earlier it was assumed that
the description of the generation and sustaining of turbulent fluctuations is possible only
through a nonlinear analysis, including direct numerical simulation of the Navier–Stokes
equations, starting from the fundamental work by Trefethen et al. (1993), many studies
shifted to linear but non-modal mechanisms of perturbation growth. As was discussed in
detail by Trefethen et al. (1993), there are two, in many senses equivalent, formulations
of the non-modal growth problem. The first is the problem of optimal perturbation, i.e.
finding optimal initial conditions that provide the largest energy growth at a given time
(temporal problem) or a given axial coordinate (spatial problem). The second is the
problem of optimal forcing, i.e. optimal harmonic excitation that provides the largest
energy (or other appropriate norm) of the flow response, which is also known as resolvent
analysis. As turbulent jets are approximately linearly spreading with the axial coordinate,
the assumption of plane-parallel base flow is doubtful, which is why recent studies
consider fully two-dimensional axisymmetric base flow (with non-zero axial and radial
velocity distributions that depend on both axial and radial coordinates) and perform global
linear analysis. The work of Garnaud et al. (2013) attempted to resolve the question of the
nature of the jet preferred mode through a linear resolvent analysis. A natural question is, to
what extent does the linear analysis of mean turbulent flow represent the actual dynamics
of unsteady turbulent flow? To address this question, Semeraro et al. (2016) considered a
somewhat similar type of global linear axisymmetric resolvent analysis of mean turbulent
jet flow (the only difference with Garnaud et al. (2013) is that the jet was compressible
with M = 0.9) and compared the results with careful experimental measurements and
large-eddy simulation (LES). It was demonstrated that although experiment and LES
calculations were in good agreement, the prediction of the linear resolvent analysis was
acceptable only for Strouhal numbers 0.3 < St < 0.8 and only near the nozzle. The authors
noted the similarity of the limitation of the linear analysis of fully two-dimensional base
flow with other problem formulations (see references in Semeraro et al. (2016) for details).

A promising development in the resolvent analysis of turbulent jets was proposed
by Pickering et al. (2020, 2021). They included the spatial variation in mean turbulent
viscosity in the linearized Navier–Stokes equations and showed that the correlation with
the LES data becomes better. They considered not only axisymmetric perturbations
but also perturbations with azimuthal wavenumbers 1–5. By analysing the qualitative
structure of forcing and response velocity fields at different Strouhal numbers and
azimuthal wavenumbers, they revealed which of the three linear growth mechanisms,
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modal Kelvin–Helmholtz and non-modal the Orr and lift-up mechanisms, are responsible
for the energy growth. For compressible jets with M = 0.4, 0.9 and 1.5, the results turned
out to be similar: Orr mechanism dominates in axisymmetric quasi-steady perturbations
(n = 0, St ≈ 0); the lift-up mechanism dominates in non-axisymmetric quasi-steady
perturbations (n > 0, St ≈ 0); the Kelvin–Helmholtz mechanism dominates at n = 0, 1
and 0.5 < St < 1.0; other ranges of the azimuthal wavenumbers and Strouhal numbers
give a much weaker response to harmonic forcing. These results suggest that linear
analysis, also encompassing variable turbulent viscosity, can indeed predict the dominant
energetic structures in a turbulent jet and that linear mechanisms are in many ways
responsible for the generation of large-scale turbulent fluctuations.

Velocity fluctuations in an unexcited turbulent jet with Re ∼ 105 were thoroughly
measured by Jung, Gamard & George (2004) using an array of 138 hot-wire probes.
They applied proper orthogonal decomposition (POD) to obtain experimentally the most
energetic modes and then to reconstruct the instantaneous fluctuating velocity field to find
the dominant structures in the turbulent jet. It appeared that more than 60 % of the resolved
streamwise turbulent energy is contained in the first POD mode. From the jet’s origin to
x/D ≈ 4, the axisymmetric POD mode shows the fastest growth and afterwards stabilizes,
giving a path to the rapid growth of higher modes. The downstream behaviour of the
eigenmodes corresponds qualitatively to the inviscid linear stability theory. Batchelor &
Gill (1962) showed that the axisymmetric mode grows strongest for the initial ‘top-hat’ jet
profile but starts decaying during the downstream evolution of the jet so that the only mode
with azimuthal wavenumber n = 1 stays stable for the ‘far-downstream’ profile. A good
correlation between the wavelength of the most energetic POD modes in fully developed
turbulent jets and linear stability theory was also noted by Mullyadzhanov et al. (2018) in
their analysis of direct numerical simulation.

An interesting study by Lemanov, Lukashov & Sharov (2020) demonstrated a new
mechanism of transition to turbulence. A jet flows out of a pipe with Reynolds numbers
Re = 1900–3500, at which the pipe flow was intermittent: mostly laminar with localized
turbulent puffs. The jet flow, consequently, was also intermittent starting from the orifice,
and the transition to turbulence included the evolution of turbulent puffs in the jet.

Returning to laminar jets and their transition to turbulence, there is no doubt that
the modal growth of perturbations plays a primary role, which yields the formation of
Kelvin–Helmholtz billows, visible in all experimental and numerical studies, and their
further breakdown. Moreover, in contrast to wall-bounded flows, in which the modal
instability is weaker than the inviscid instability of jet flows, the initial non-modal growth
does not yield a local maximum of the optimal energy gain curve but just increases the
amplitude of the fastest growing eigenmode (Jiménez-González et al. 2015), which then
follows the long-time asymptotic of Ortiz & Chomaz (2011). It is also worth noting that in
laminar jets, a local approach is more adequate than in turbulent jets, because the spatial
development of steady laminar flows is much slower than that of turbulent flows. Note that
Boronin et al. (2013) and Jiménez-González et al. (2015), who first studied non-modal
linear growth in laminar jets, considered plane-parallel (i.e. non-developing downstream)
base flow.

To our knowledge, the only attempts to experimentally correlate small perturbations
of the jet flow in its laminar portion with linear stability theory were made by
Cohen & Wygnanski (1987) and Petersen & Samet (1988). Cohen & Wygnanski
(1987) experimentally studied the evolution of axisymmetric and helical modes (excited
acoustically) in axisymmetric jet at a Reynolds number of 24 000. Phase-locked
measurements have been made using eight thermoanemometers at downstream distances
x/D ≤ 0.7. The theoretically and experimentally obtained amplitude and phase
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distributions in the forced jet were in good agreement, although the spatial growth rate of
the excited perturbation was 2–3 times lower than predicted theoretically. The wavelengths
of the perturbations were not measured, because they were larger than the distance at which
the transition to turbulence occurred. The same facility was used for the comparison of
experimental and theoretical results for the jet’s stability characteristics by Petersen &
Samet (1988). The velocity regime at which the measurements were made was higher:
Re = 56 000; and the downstream distances of the measurements were larger, up to x/D =
5. Although the transition to turbulence occurred near the orifice, 0.5 < x/D < 1, the
radial distributions of the amplitude and phase of the axial velocity perturbations, as well
as the phase speed measured at different streamwise locations, were in good agreement
with the predictions of linear stability theory, obtained through the Orr–Sommerfield
equation in the laminar, transitional and fully turbulent regions of the jet.

It must again be noted that most of the experiments reviewed above, as well as many
others in which the jet was excited, dealt with turbulent jets. Clearly, linear stability theory
provides important mechanisms for sustaining large-scale turbulent fluctuations, but the
quantitative correlations with experiments are good only in terms of specific quantities
under specific flow conditions and fail under other conditions (Semeraro et al. 2016;
Boguslawski et al. 2019). This inconsistency is natural, because turbulence inevitably
includes nonlinear effects, whose precise role is still not fully clear. A disagreement
between the theoretical and experimental growth rate (Cohen & Wygnanski 1987) in a
laminar jet also keeps open the question of the role of nonlinearity in the initial stage of
perturbation evolution.

The only experiments by Cohen & Wygnanski (1987) and Petersen & Samet (1988)
on controlled excitation of a laminar portion of the jet suffer from a very short laminar
region (shorter than one diameter), which did not allow measuring wavelengths and spatial
growth rates within the laminar region. The main obstacle to obtaining a long laminar
portion of the jet is the extremely low critical Reynolds number of jet flows, ranging
from 14 to 44 (Morris 1976; Shtern & Hussain 2003; Mullyadzhanov & Yavorsky 2018),
depending on the problem formulation and assumptions and, consequently, jet breakdown
within one or two diameters from the orifice at large Reynolds numbers. Given that, on
the one hand, experiments on perturbation growth should be conducted with sufficiently
thick jets to be able to perform detailed experimental measurements of perturbations
and that, on the other hand, the distance to transition should be sufficiently long to
capture at least several wavelengths, it is extremely difficult to organize such laminar
jet flow.

Recently, our group proposed a new technique for the generation of laminar jets (Zayko
et al. 2018). The experimental facility provides a submerged air jet of diameter D = 0.12 m
with Reynolds numbers of up to 10 000 (below, unless otherwise specified, the Reynolds
number is based on the jet diameter D and the velocity averaged over the cross-section) and
a length of the laminar region of up to five jet diameters. Such parameters provide excellent
conditions for the experimental analysis of small controlled perturbations in laminar jet.
Moreover, the jet profile obtained in our experiments has three inflection points, yielding
two different axisymmetric instability modes with a similar frequency range but different
wavelengths and radial distributions of fluctuations (unlike classical ‘top-hat’, parabolic
or ‘far-downstream’ profiles with one inflection point and at most one mode of instability
for each azimuthal wave number). Separate excitation and experimental analysis of these
two modes is a more sophisticated benchmark for linear stability theory than classical jet
profiles. This is the goal of the present study.

The paper is organized as follows. Section 2 is devoted to the theoretical analysis
of jet instability. Section 3 describes the experimental facility and the study of
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Figure 1. Photograph (a) and sketch (b) of the forming device: pipeline (1), perforated plate (2) and bushing
with two metal grids (3), and diffuser (4) with metal grids (5). Photograph of the diffuser without (c) and with
(d) metal grids and its sketch (e).

controlled perturbations. Section 4 is devoted to the comparison of theoretical predictions
with experimental data and § 5 summarizes the results and concludes the paper.

2. Theoretical study of perturbation growth in a submerged jet

In this section, we theoretically study perturbation growth in an experimentally obtained
axisymmetric jet. Zayko et al. (2018) discussed in detail the forming device and the jet
properties, so we only briefly describe them here.

2.1. Jet-forming device
The air jet is formed by a device that consists of two principal sections (figure 1a,b). The
first section reduces the turbulent fluctuations of the incoming flow and consists of a tube
of length 0.14 m and inner diameter 0.04 m. At the inlet of the tube, a perforated plate
with holes of diameter 0.6 mm and a holes-to-plate area ratio of 0.8 is installed. A bushing
with two metal grids is located downstream the plate: the first grid at a distance of 0.3 m;
the second at 0.8 m from the plate. The wire diameter of the first grid is 0.05 ± 0.004 mm
and that of the second grid 0.03 ± 0.004 mm; their free area ratios are 34.4 % and 32.7 %,
respectively. The second section is a short round diffuser with length 0.04 m, inlet diameter
d = 0.04 m and outlet diameter D = 0.12 m (figure 1c,d,e). Two metal grids are stretched
at the diffuser outlet to prevent flow separation from the wall (figure 1d,e).

In this study, we consider a flow regime with a velocity at the jet axis of Uc = 1.5 m s−1,
which corresponds to Reynolds number Re = 5400 (the jet diameter is D = 0.12 m, and
the velocity Uav averaged over the jet’s cross-section is 0.66 m s−1). As shown by Zayko
et al. (2018), at this regime the jet is laminar up to a distance x/D = 5 from the diffuser
outlet (below we will call this the ‘orifice’ for brevity).
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Diffuser wall

Interface 1

External boundary

Porous 

domain 

Interface 2

External 

boundaries

Rigid wall

Inlet

Outlet

Figure 2. Computational region consisting of the tube and diffuser (deep grey domain), the porous domain
(light grey domain) and the ambient fluid region (white domain).

2.2. Base velocity profiles at different spatial locations
To get smooth axial velocity profiles U(r), where r is the radial coordinate, we performed
laminar-flow calculations of the jet flow. To make sure that the calculations represent the
real jet, the obtained profiles of axial velocity were compared with experimental profiles
measured by a thermoanemometer at different axial locations. After that, the calculated
profiles were approximated by analytical functions, which were finally used in the stability
analysis.

As the jet is laminar, we conducted steady-state laminar calculations to obtain velocity
profiles at different distances from the orifice. The Navier–Stokes equations were solved by
the control volume method implemented in the Ansys CFX solver. Due to the axisymmetry
of the forming device and the flow, the computational region was chosen to be the 5◦ sector,
with symmetry conditions at the sector’s side planes (figure 2). The tube and the diffuser
(deep grey in figure 2) and the ambient area (white in figure 2) are incompressible fluid
domains. The porous domain (light grey in figure 2) models the metal grids at the diffuser
outlet. To describe the momentum loss at the grids, permeability and resistance loss
coefficients of the porous medium were specified according to experimentally measured
pressure drops at the grids (Zayko et al. 2018). The outlet section and horizontal external
boundary were located at distances 5D and 5.5D from the porous domain and the axis,
respectively. We have also checked a longer domain in streamwise direction (10D) to make
sure that the velocity distribution for x/D ≤ 3 is converged.

A normal velocity of 5.9 m s−1 was specified at the inlet (which corresponds to velocity
1.5 m s−1 at the jet axis), no-slip condition at the diffuser wall, and a pressure of 105 Pa at
the external boundaries and outlet; additionally, a zero gradient of the flow direction was
specified at the external boundaries. Details of the computational mesh and convergence
study can be found in Zayko et al. (2018). Figure 3 shows the calculated laminar jet flow,
which turns out to be just slightly developing at the distance x/D ≤ 10.

The comparison of numerical and experimental profiles is shown in figure 4(a–c). It
is seen that the correlation is good at distances x/D ≤ 1.5 (figure 4a,b); however, farther
downstream at x/D = 3, some discrepancy appears at the outer jet region (figure 4c) due
to an apparent irregularity in the experimental velocity profile. We explain this irregularity
by growing velocity fluctuations, possibly nonlinear, which, however, do not break up the
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0 1 2 3 4 5 6 7 8 9

x/D

u (m s–1)

0

0.75

1.50

Figure 3. Distribution of axial velocity in the developing jet (streamwise domain length is 10D).

laminarity of the flow, as was confirmed by visualization (see § 3.2 below). Nevertheless,
the deviation between the experiment and the calculation is not large even at x/D = 3
(the largest distance that will be analysed in this study) so that we consider the calculated
profiles acceptable.

An important characteristic of the velocity profile in the context of linear stability
analysis is generalized inflection points, i.e. points at which

d
dr

(
rU′

n2 + α2r2

)
= 0, (2.1)

where the prime denotes the derivative with respect to r; α ∈ C and n ∈ Z are axial
and azimuthal wavenumbers, respectively. Near the orifice, there are three generalized
inflection points: two of them are located near the jet boundary, and the third is closer to
the jet axis (figure 4a). The two generalized inflection points near the jet boundary get
closer to each other when moving downstream (figure 4b), and they merge at a distance
x/D ≈ 1.8. Consequently, only one generalized inflection point remains in the profiles at
distances larger than 1.8D (figure 4c). Note that Uc does not change significantly with
increasing distance from the orifice: for instance, the difference between Uc at x/D = 0.5
and x/D = 1.75 is approximately 1 %.

In the theoretical analysis, it is convenient to approximate the calculated base velocity
(defined on a finite-volume grid) by an analytical function, because it readily provides the
first and second derivatives, avoiding errors of differentiation of the grid-defined function.
The results of the approximation at different distances from the orifice are shown in
figure 4(d–f ), and an excellent correlation is clear. The set of resulting base profiles is
summarized in figure 5. It is seen that the evolution of the velocity profiles downstream
consists of a slight viscous spreading near the jet boundary.

2.3. Formulation of the stability problem
Because of sufficiently large Reynolds number, the instability analysis was based on
inviscid linear stability theory. To obtain a dimensionless problem formulation, the
velocities are non-dimensionalized by Uc, and the distances by D/2. The Euler equations
linearized around the steady-laminar unidirectional jet with a given velocity profile yield
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Figure 4. Comparison of experimental (crosses) and numerical (lines) velocity profiles (a–c). Comparison of
numerical (lines) and analytical (markers) velocity profiles (d–f ). Distance x/D = 0.01 (a,d), 1.5 (b,e) and 3
(c, f ) from the orifice; the circles denote generalized inflection points for azimuthal wavenumber n = 0.

U
/U

c
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0
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Figure 5. Analytical axial velocity profiles at distances from the orifice of x/D = 0.01, 0.04 (black), 0.1
(yellow), 0.25 (red), 0.5 (deep blue), 1 (light blue), 2 (grey) and 3 (green).
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the Rayleigh equation for a radial velocity perturbation,

(U(r) − c)
d
dr

(
r

n2 + α2r2
d(rG(r))

dr

)
− (U(r) − c)G(r) − rG(r)

d
dr

(
rU

′
(r)

n2 + α2r2

)
= 0,

(2.2)

where G(r) is the amplitude of the radial velocity fluctuation ur = iG(r) exp(i(αx +
nφ − ωt)), ω ∈ R is the frequency and c = ω/α is the phase speed. A similar equation
for a plane-parallel flow was first obtained by Rayleigh (1892), and its form (2.2) for the
axisymmetric flow was derived by Batchelor & Gill (1962). The dimensionless frequency
ω is related to the physical dimensional frequency Ω as

ω = 2πΩ

Uc

D
2

. (2.3)

The dimensionless wavenumber α defines the dimensional growth rate δ and wavelength
λ through the relations

δ = −Im α

(
D
2

)−1

and λ = 2π

Re α

D
2

, (2.4a,b)

respectively.
The function G(r) should satisfy two boundary conditions. The first condition at r = 0

is the following (see Batchelor & Gill (1962) for details):

G(0) = 0 for n = 0,

G′(0) = 0 for n = 1,

G(r) ∼ rn−1, r → 0 for n > 1.

⎫⎬
⎭ (2.5)

The condition at r = 1 is the radiation condition transferred from infinity,

G′(r)
G(r)

= K′′
n(αr)

K′
n(αr)

for r = 1, (2.6)

where Kn is the modified Bessel function of the second kind.
The boundary-value problem (2.2), (2.5), (2.6) defines an eigenvalue problem

to find α(ω, n) ∈ C for each ω ∈ R, n ∈ Z. Condition (2.5) selects one of two
linearly independent solutions of the Rayleigh equation. Integrating this solution by
the Runge–Kutta method from r = 0 to r = 1, we obtain the function g(α, n, ω) =
G′(1)K′

n(α) − G(1)K′′
n(α). To satisfy condition (2.6), the root α(ω, n) of the equation

g(α, n, ω) = 0 is found by the secant method.
For the stability analysis, we used velocity profiles at different distances from the orifice

(figure 5). At a given distance, a weak dependence of the velocity on the axial coordinate
was neglected when integrating (2.2), thus providing the parametric dependence α(ω, n, x)
on x through the base velocity profile slowly varying with x. This dependence on x
necessarily requires a small non-zero radial velocity component of the base flow, which
was also neglected. Such a local approach is typical for base flows that are slowly varying
in space, to which belongs the laminar jet at large Reynolds numbers. To restore the
global spatial growth of the perturbation from the local linear stability analysis, local
amplifications exp(−Imα(ω, n, x)�x) in every small axial segment �x can be multiplied
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Figure 6. Branches of growing perturbations for velocity profiles at x/D = 0.5 (deep blue) and x/D = 1
(light blue) in the complex half-plane, c. The curves for the second branch coincide.

to give the global amplification exp(− ∫ Imα(ω, n, x) dx). From this expression, the
so-called N-factor can be extracted for a fixed azimuthal wavenumber n = n0 as

N(x) = max
ω

∫ x

x0

(−Imα(ω, n0, x)) dx, (2.7)

which characterizes the global perturbation growth at a given x as eN(x).

2.4. Results of the linear stability analysis
First, consider the results for an axisymmetric perturbation with n = 0. The aim of
the study is to compare the predictions of the linear theory with experiments, and an
axisymmetric perturbation is the most convenient one to experimentally introduce into
the jet.

We found two branches of growing perturbations at n = 0. The first branch is
generated by two generalized inflection points near the jet boundary, because the curve
c(ω) = ω/α(ω), ω ∈ R, connects two neutral phase speeds equal to the velocities at
the corresponding inflection points (figure 6). The second branch is generated by the
generalized inflection point that is the closest to the jet axis: the corresponding c(ω) curve
connects the phase speed equal to the velocity at this point with c = 1 (figure 6). The
modes of the first branch disappear at distances x > 1.8D due to the disappearance of two
outer generalized inflection points.

The spatial growth rates −Imα of the first branch of growing perturbations are greater
than those of the second branch (figure 7). The frequency range of growing perturbations is
ω = 0–3.3 for both branches, except for the profiles that are extremely close to the orifice
(see figure 7). The corresponding range of Strouhal numbers St = ΩD/Uc is St = 0–1.06.
The frequencies of the most growing perturbations are similar for both branches and lie in
the range 1–1.76 (St = 0.33–0.57).

In the case of the second branch, the range of the frequencies of the most growing
perturbations, as well as the value of the growth rate, does not significantly differ for
the profiles at different distances from the orifice (figure 7b). For the first branch, the
perturbations grow faster, and the growth rates significantly depend on the distance from
the orifice, but the frequencies corresponding to the maximum growth do not leave the
range 1–1.76.

It is worth noting that in classical jet flows with one inflection point, their instability
mode corresponds to the second mode of the present jet, which is clearly seen when the
two outer inflection points merge and disappear, after which the first mode is decaying so
that only the second mode keeps growing.
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Figure 7. The theoretical dimensionless spatial growth rate −Imα versus the dimensionless excitation
frequency ω at different distances from the orifice x/D ≥ 0.04 (the colour coding corresponds to that in
figure 5) for the first (a) and second (b) branches of growing perturbations.

N

x/D
1 20

1

2

3

4

Figure 8. The N-factors calculated for the first (black) and second (grey) modes.

Although the first mode is growing in a limited range of x/D (up to the collapse of the
two outer generalized inflection points), its growth in the initial jet region is stronger than
that of the second mode, as can be estimated by the N-factor (2.7) shown in figure 8. Hence,
if both modes are excited with comparable and sufficiently large amplitudes, the transition
to turbulence will be triggered by the first mode. However, if the initial amplitudes are
small enough, and the first mode starts decaying before the manifestation of nonlinear
effects, then the transition will be triggered farther downstream by the second mode.

Figure 9 shows that the wavelengths of the first branch are shorter than those of the
second branch, which provides a clear way to experimentally distinguish the observed
perturbation modes.

The calculations show that for n > 0, there are at most two branches of growing
perturbations. For the second branch, growing perturbations exist only for n = 0, 1; for
n ≥ 2 these modes are decaying. The perturbations of the first branch have the largest
maximal growth rates at n = 0 for the profiles at distances x/D = 0.01, 0.04, 0.1, 0.25,
0.5, and at n = 1 for x/D = 1, 1.5. These maxima decrease with increasing n (table 1). We
have observed similar behaviour in the temporal stability analysis of the velocity profiles
near the orifice at different flow regimes (Zayko et al. 2018).
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Figure 9. The theoretical dimensionless wavelengths 2λ/D versus the dimensionless excitation frequency ω

(the colour coding corresponds to that in figure 5).

First branch Second branch

x/D n = 0 n = 1 n = 2 n = 5 n = 0 n = 1

0.01 8.90 8.86 8.77 8.2 0.21 0.23
0.04 6.99 6.89 6.65 5.52 0.23 0.24
0.1 5.92 5.77 5.42 4.19 0.24 0.27
0.25 3.92 3.76 3.45 2.50 0.25 0.26
0.5 1.89 1.77 1.56 0.90 0.20 0.27
1 0.76 0.80 0.79 0.33 0.23 0.31
2 — — — — 0.22 0.30
3 — — — — 0.21 0.30

Table 1. Maximum dimensionless growth rates −Imα for different azimuthal wave numbers n at different
distances from the orifice.

3. Experimental study of perturbation growth in a submerged jet

In this section, we describe an experimental study of controlled perturbations in
a submerged jet. Two series of experiments were conducted: first, we investigated
perturbations of the first branch (generated by inflection points near the jet boundary);
second, perturbations of the second branch were considered. Below, we use dimensional
physical frequencies Ω (Hz) and wavelengths λ (m) to compare the experimental results
with the theoretical predictions.

3.1. Experimental apparatus for the generation of controlled perturbations
Axisymmetric perturbations are the fastest growing perturbations of the considered jet
and the most convenient to introduce them into the flow. The theoretically predicted
physical frequencies Ω of the most growing perturbations are too low (≈ 0–13 Hz) for
using acoustic excitation so that we decided to introduce the perturbations mechanically.
Two thin metal strings were pulled on two drivers at a distance x = 19 mm (≈ 0.16D,
D = 0.12 m) from the orifice, and a ring made of a wire was fixed on the strings coaxially
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1

2

3

Figure 10. Sketch of ring (1) on the strings (2) in the jet (3). The ring is located coaxially with the jet. The
strings are oscillated by the driver in the axial direction.

(a) (b)

Figure 11. The large ring (indicated by the arrow) that introduces controlled disturbances of the first branch
of growing perturbations.

with the jet (figure 10). The string thickness is 0.2 mm (≈ 0.0017D), and the strings
do not significantly affect the jet both at rest and during oscillations along the jet axis.
The oscillations are governed by the drivers, and they have specified amplitudes and
frequencies. In each series of experiments, one of the two rings was used. The first ring
had a diameter of 102.4 mm (0.85D), and the second ring had a diameter of 56.9 mm
(0.47D) (figures 11 and 12). We chose these specific diameters to locate the first (large)
ring between the two outer generalized inflection points, and the second (small) ring
approximately under the internal generalized inflection point. The large and small rings
had to amplify the disturbances of the first and second branches of growing perturbations,
respectively. The thicknesses of the large and small rings’ wires are 0.8 mm and 0.4 mm
(≈ 0.0066D and 0.0033D), respectively. At the considered velocity regime, the Reynolds
numbers of the flows around their cylindrical cross-sections are 42.4 and 35.5, and both
are below the critical value of 47 (Roshko 1954) so that von Kármán vortex streets are not
formed downstream the rings.

3.2. Visualization
We put small reflective glycerin particles into the jet to visualize the flow. A plane section,
passing through the jet axis, is lighted by a laser sheet, which is generated by a Beamtech
Vlite-Hi-100 laser. The jet is filmed by a Canon EOS 600D camera (figure 13).

We performed visualization experiments with the first ring. First, we checked that the
resting ring does not violate the laminar character of the jet (see the first photograph
in figure 14) and does not significantly change the velocity profile (figure 15). The first
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Figure 12. The small ring (indicated by the arrow) that introduces controlled disturbances of the second
branch of growing perturbations.

1

3

5
2

4

Figure 13. Oscillating ring (1), tube for putting the reflective glycerine particles into the flow (2), laser light
sheet (3), laser (4) and video camera (5).

series of experiments was conducted at different oscillation frequencies with a constant
ring displacement amplitude, and the subsequent series were conducted at a constant
amplitude of the oscillations’ velocities. First, at a frequency Ω = 4.75 Hz (St = 0.38),
the amplitude of the ring oscillations was chosen to be 0.9 mm. At this amplitude, the
influence of the oscillations on the jet is noticeable, but it is not so large that the jet
breaks down close to the orifice. Then, in the first visualization series, the displacement
amplitude was approximately equal to this value for various oscillation frequencies. This
displacement amplitude at 4.75 Hz corresponds to the amplitude of an oscillation velocity
of 0.027 m s−1. In the subsequent series of visualization experiments, we kept this value
at 0.027 ± 0.003 m s−1 for different frequencies of the ring oscillations.

The filming of the jet was conducted at frequencies of the ring oscillations of 0–12 Hz
with a step of 0.25 Hz – figure 14 shows several samples.

In the region of linear growth (before the start of the formation of Kelvin–Helmholtz
billows), we measured the lengths of sinusoidal waves over the jet boundary using movie
snapshots. Specifically, we measured the distance between two successive humps in a
computer image, as shown in figure 16. This value was then scaled to millimetres with
a calibration picture of a ruler located at the same distance from the camera as the laser
sheet. This process has two sources of inaccuracy. First, the resolution of the computer
image was 184 pixels per 100 mm; hence, the inaccuracy caused by a one-pixel error yields
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1

0 Hz 3 Hz 3.5 Hz 4.5 Hz 4.75 Hz 5.75 Hz 6.25 Hz5.5 Hz 6.5 Hz 12 Hz4 Hz 5 Hz

2

3

4

5

6
D

Figure 14. Photographs of the jet under the oscillations of the first (large) ring with different frequencies at
a constant amplitude of the velocity of the ring’s oscillations. The axial distance is measured from the ring’s
location.

1.00

0.50

0

0.75

0.25

U
/U

c

2r/D
0.2 0.4 0.6 0.8 1.0

Figure 15. Velocity profiles at a distance x/D = 0.54 without the large ring (black crosses), and with the
large ring resting (grey circles).

λ

Figure 16. Wavelength of the disturbance at the jet boundary under the first ring’s oscillations with a
frequency of 4.5 Hz.

a physical error of less than 0.5 mm. Second, the human eye leads to inaccuracy in the
selection of the highest points on the humps. We estimated that this inaccuracy does not
exceed ±3 mm at each hump; given that there are two humps, we obtain a total inaccuracy
of the measured wavelength of not more than ±6 mm. Measuring the distance between two
humps that are remote from each other makes the inaccuracy even lower than this value.
The obtained wavelengths were compared with the theoretically calculated values.

For the second branch, we failed to obtain corresponding wavelengths from the
visualization during the small ring’s oscillations: at the same amplitude as for the large
ring, there was no visually noticeable perturbation of the jet boundary; i.e. the second
mode was localized inside the jet.
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101

4

3

2

Figure 17. Rangefinder (1) and mirror (2), small oscillating ring (3) and thermoanemometer probe (4). Laser
beam of the rangefinder is shown in red.

3.3. Measurements of velocity fluctuations and correlation analysis
To find the wavelengths of the second branch of growing perturbations, we used the
correlation between the velocity fluctuations and the location of the oscillating ring. The
same method was employed to double-check the wavelengths of the first branch (obtained
from the visualization). The velocity fluctuations were also used directly for the analysis
of their spatial distribution and growth rate.

A DISA 56C01 CTA thermoanemometer was used for the velocity measurements.
The signal was transferred to an analogue-to-digital converter connected to a personal
computer. The velocity was measured by small-sized Dantec Dynamics 55P11 probes.
The probe has a wire sensor mounted on two straight needle-shaped prongs. The wire is
1.25 mm long and 5 μm thick. The anemometer probe was mounted on the probe support
and then placed into the flow with the wire perpendicular, and the prongs parallel, to the
flow. The probes were calibrated in a standard way. The traversing apparatus moves the
probe along the radial position and along the jet axis so that we measured the velocity
versus the radial coordinate at different distances from the orifice.

As the thermoanemometer measures velocity with a high sampling rate (7.5 kHz), and
the measurement period at each spatial point lasted 10 s, its random error is negligible.
A systematic error comes from the calibration process; for our calibration procedure, we
estimated the absolute error to be less than 0.015 m s−1 (i.e. the relative error at a mean
velocity of ∼1.5 m s−1 is less than 1 %). The error of velocity fluctuations is determined by
the inaccuracy of the slope of the calibration curve. For our range of calibration velocities,
we estimated this error to be less than 3 %. Note that as this error is systematic, the
inaccuracy of the relative velocity fluctuations at different spatial locations analysed below
in this study, is far less than 3 %.

To measure the oscillating ring’s displacement, we used a rangefinder (a Riftek RF603
laser triangulation sensor), shown in figure 17, with an error of measurements provided
by the manufacturer of less than ±0.25 mm. Although this error is quite large compared
with a typical ring amplitude, we always bandpass filter the data around the oscillation
frequency, which removes random high-frequency noise. A comparison of the amplitude
obtained by this method with direct ring amplitude measurements by a contact probe gives
an amplitude error of ∼0.04 mm, which is acceptable for our purposes.
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1–1

Small ring
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x/D x/D

2r/D 2r/D

Large ring
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(b)(a)

Figure 18. Correlation maps for the signal of the rangefinder and the thermoanemometer under the action of
the first (a) and the second (b) ring. The frequency of the rings’ oscillations is 6.6 Hz.

The signals of the rangefinder and the thermoanemometer were recorded synchronously,
and both were bandpass filtered in a range of ±0.5 Hz around the ring oscillation
frequency.

The correlation corr(r, x) between the discrete rangefinder signal sr
i , i = 0, . . . , N − 1,

and the thermoanemometer signal sth
i , i = 0, . . . , N − 1, at a given spatial point (r, x) was

calculated as

corr(r, x) =
∑N−1

0 sth
i sr

i√∑N−1
0 (sth

i )2
∑N−1

0 (sr
i )

2
, (3.1)

where N is the number of measurements during the period of 10 s. The calculation of
the correlation is in fact equivalent to the phase-averaging of the anemometer signal.
Indeed, for the ring oscillation q = a sin(ωt) and the expected anemometer signal u′ =
f (r) sin(αx − ωt + φ(r)), we obtain, in continuous representation,

corr(r, x) =

∫ T

0
qu′ dt√∫ T

0
u′2 dt

∫ T

0
q2 dt

=

∫ T

0
sin(ωt) sin(αx − ωt + φ(r)) dt√∫ T

0
sin2(ωt) dt

∫ T

0
sin2(αx − ωt + φ(r)) dt

→ − cos(αx + φ(r)), (3.2)

as the ratio of the averaging time T to the oscillation period tends to infinity. Hence, the
correlation as a function of x for a given r should be a wave-like function convenient for the
extraction of the wavelength. A direct phase-averaging of the anemometer signal gives the
same information; however, processing the experimental data with both methods showed
that the correlation analysis provides a less noisy picture, which is why we used it in the
analysis below. Examples of the correlation maps in the (r, x) plane are shown in figures 18
and 19, in which clear wavy structures can be seen.
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Figure 19. Correlation maps for the signal of the rangefinder and the thermoanemometer under frequencies
of the second ring’s oscillations of (a) 5, (b) 6 and (c) 7 Hz.
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Figure 20. Method of wavelengths measurement: two curves going along successive maximums of the
correlation, and the wavelength λe(r), which then was radially averaged.

We determined the wavelengths from the image analysis of the correlation maps.
Specifically, we identified two curves going in the radial direction over two successive
maximums of the correlation (figure 20). Then, for each r, the distance λe(r) between
these maximums was calculated and then radially averaged. For the first mode, for which
a clear uniform wave is visible (figure 18a), the root mean square of the radial averaging is
sufficiently low (<13 mm), but for the second mode the situation is worse. As the modes
of the second branch grow much slower than those of the first branch, the excitation
of the second branch is accompanied by the excitation of the first branch near the jet
boundary. When moving downstream, the waves of the first branch trigger transition
that occupies an increasingly large portion of the jet (figure 18b). To get rid of the first
mode, we performed radial averaging in a short radial segment (figure 19). The root mean
square of the calculated wavelength averaged over the frequencies analysed is 21 mm,
which can be regarded as the accuracy of the wavelength measurements of the second
mode.

4. Experimental results and comparison with theoretical predictions

4.1. Length of the laminar region
As the direct visualization shows (figure 14), the oscillations of the first ring significantly
shorten the laminar region of the jet for frequencies Ω = 4–5.5 Hz (ω = 1–1.38) that
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Figure 21. Comparison of the theoretical (curves; the colours correspond to the colour coding in figure 5) and
experimental (markers) wavelengths of the first branch’s (a) and second branch’s (b) disturbances. The circles
correspond to the visualization experiment with constant ring displacement amplitudes; the filled and empty
squares correspond to the two series of visualization experiments with constant amplitudes of the oscillations’
velocity. The pink and black triangles are extracted from the correlation maps obtained in the experiments with
the large and the small ring, respectively.

correspond to the theoretical frequency range of the fastest growing perturbations of
the first branch (figure 7a). In contrast, for frequencies lower than 4 Hz and greater
than 5.5 Hz, the effect of the ring oscillations decays with decreasing and increasing
frequency, respectively. For instance, at frequencies of 3.5, 5.75 and 6.25 Hz (figure 14),
we see little impact on the jet: there are sinusoidal waves on the jet boundary, but they
do not develop into Kelvin–Helmholtz billows and do not destroy the flow before the
axial position at which the velocity fluctuations increase without the excitation; namely,
before x/D = 5 (Zayko et al. 2018). Note that the unperturbed jet looks laminar even at
a distance of 6D from the orifice, but the velocity fluctuations are no longer small in this
area. For the other frequencies shown in figure 14, there is no effect of the excitation
at all.

This observation obviously suggests that faster modal growth causes earlier
turbulization, which means a qualitative correlation between the theoretical and
experimental growth rates. The quantitative measurements of the perturbation growth rates
will be considered below.

4.2. Perturbation wavelengths
Wavelengths of the first-mode perturbations, which were obtained from the correlation
maps and from the visualization, are in good agreement with each other and with the
theoretically predicted wavelengths, as seen in figure 21. Note that this figure shows
theoretical curves for the velocity profiles at distances x/D = 0.25, 0.5 and 1 for the first
branch and at x/D = 0.25, 0.5, 1, 2 and 3 for the second branch; theoretical curves for
x/D ≤ 0.1 are not shown, because these positions are closer to the orifice than the ring
(≈ 0.16D).

For the second branch, the theoretical wavelengths (as well as the growth rates, § 4.4) are
almost independent of the distance from the orifice so that the theoretical curves calculated
for all considered distances coincide with each other (see also figure 9). An excellent
correlation is seen in figure 21 between the experimental points and the theoretical results
for the second mode.
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Figure 22. Radial distributions of the theoretical axial amplitude |F| of the first branch’s growing waves
(curves) and of the velocity fluctuations u′/Uc obtained in the experiments with the large ring (points).
Calculations with mean profiles and similar measurements for x/D = 0.5 (a,c,e) and 1 (b,d, f ). Frequencies
of 4 (a,b), 5 (c,d), 6.6 (e) and 5.7 ( f ) Hz.

4.3. Radial distribution of velocity fluctuations
For n = 0, the amplitude F of the axial velocity fluctuation ux(x, r, t) = F(r) exp(i(αx −
ωt)) is expressed from the continuity equation through the radial fluctuation as (Batchelor
& Gill 1962)

F = − 1
α

(
G′ + G

r

)
. (4.1)

For the first branch, the experimental radial distributions of the velocity fluctuations
(bandpass filtered near the value of the ring oscillation frequency) at distances x/D = 0.5
and 1 correspond to the theoretical radial distributions of |F|, obtained in calculations with
the profiles at the same distances (figure 22). The difference between the theoretical and
the experimental results near the jet boundary (2r/D ≈ 1) is caused by the difference
between the actual velocity distribution and the unidirectional profiles used in the
calculations. Indeed, as the axial velocity becomes small near the jet boundary, it becomes
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Figure 23. Theoretical growth of the first-branch mode of frequency 5 Hz (black circles with a solid line) and
the maximal velocity fluctuations u′/Uc versus x/D in two series of experiments with the large ring (black and
grey markers).

comparable to the radial component caused by the viscous spreading of the jet. In other
words, the flow near and outside the jet boundary is two-dimensional, which is not taken
into account by the theory employed. Another source of the difference is the low accuracy
of thermoanemometer measurements of small velocity values. Nevertheless, inside the
jet, where the flow is truly unidirectional, the correlation between the theory and the
experiments is excellent.

For the second branch, the theoretical and experimental radial distributions of the
velocity fluctuations do not agree. The reason is that the waves of the second branch are
much less intense than those of the first branch due to the much lower growth rates. When
the second mode is excited, the waves of the first mode are inevitably generated as well
and overlap the second mode in most of the jet. This is also seen in the correlation map for
the full radial range (figure 18b): upon excitation of the second mode, there is a significant
change in the wavelength along the radius, whereas upon excitation of the first mode, the
correlation map is rather uniform (see figure 18a).

4.4. Growth rates
For a fixed frequency, we obtain the global perturbation growth along the jet axis by the
integration of local growth rates, as explained in § 2.3:

u′(x)/Uc = A0 exp
(∫ x

0
δ(ξ) dξ

)
. (4.2)

Here u′ is the velocity fluctuation and A0 is an arbitrary initial amplitude. We calculated
the perturbation growth with x using (4.2) for a frequency of 5 Hz for the first branch and
for frequencies of 4, 5, 6, 8, 10 and 12 Hz for the second branch.

In figures 23 and 24, the theoretical growth is compared with the maximal velocity
fluctuations (filtered around the ring oscillation frequency) measured in the experiments at
different distances from the orifice. We observe that near the ring (within a distance x/D ≈
1), the experimental velocity fluctuation decays, because the introduced perturbation does
not correspond in its spatial distribution to the growing eigenmode. After the decay of
all the other spatial components, the eigenmode remains the only growing fluctuation
component so that the total fluctuation starts to grow. This signifies the distance interval
within which the growth rate should match the theoretical prediction. Farther downstream,
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Figure 24. Theoretical growth of the second-branch modes (black circles with solid lines) and the maximal
experimental velocity fluctuations u′/Uc versus x/D. Frequencies 4 (a), 5 (b), 6 (c), 8 (d), 10 (e) and 12 ( f ) Hz.

after a region with a good correlation between the linear theory and the experiments,
the region of linear growth of the eigenmode transforms into a region of nonlinear
development that cannot be described in terms of linear stability analysis.

Note that constant A0 was tuned individually in each plot of figures 23 and 24 to get the
eyeball correlation with the experiment in the region of linear growth. Its actual value is
determined by the receptivity of the growing mode to the introduced perturbation, which
is outside the scope of this study. Moreover, a change in A0 only shifts the theoretical curve
up or down but does not change the slope that drives the growth rate.
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For the first branch, the experimental growth rate at a frequency of 5 Hz (calculated as
the slope of the linear region of ln(u′/Uc) as a function of x) is larger than for the second
branch, which is in agreement with the theoretical predictions (figure 23). Although the
experimental points of the first mode for the two series of experiments are shifted along
the axis, their slopes in the linear portion are consistent with the average slope of the
theoretical curve.

For the second branch (figure 24), an excellent correlation between the theory and
the experiments in a certain range of axial positions is also clear. The inclination of the
linear region of the function ln(u′/Uc) decreases with an increase in the frequency of the
disturbance from 5 to 12 Hz (figure 24), which is also in agreement with the theoretical
results.

5. Conclusions

In this paper, we have experimentally studied the development of small controlled
axisymmetric perturbations in a laminar jet at Re = 5400. The jet has two axisymmetric
modes of instability, which were studied separately. We analysed the first mode, which is
localized near a jet boundary, by flow visualization in a laser sheet and thermoanemometer
measurements. The internal inflection point generates the second mode, which was studied
by correlation analysis between thermoanemometer measurements and the vibrating ring.
The results are compared with eigenmode calculations of the Rayleigh equation with the
parallel-flow assumption. We have shown that the wavelengths and growth rates of both
modes, as well as the perturbation velocity profiles of the first mode, are in excellent
agreement with theoretical analysis. Unlike previous studies, we considered only the truly
laminar portion of the jet, and the perturbations in our experiment are truly small and have
a significant region of exponential evolution downstream; in this sense, our study is the
first fair validation of inviscid stability theory for a jet flow. A good correlation between
experimental and theoretical data somewhat closes the question on the role of nonlinear
mechanisms in the initial evolution of jet perturbations; at least at quiet conditions, strong
inviscid instability develops purely linearly.

Our results prove that linear inviscid stability theory with a unidirectional-flow
approximation is a robust tool for the analysis and optimization of high-Reynolds-number
laminar jet flows in ‘quiet’ ambient conditions, even when taking into account slow jet
evolution due to viscous spreading. We believe that further analysis of perturbation growth
under other conditions, including receptivity analysis and non-modal transition, will result
in the development of new methods for jet transition control, which are currently quite
mature for wall-bounded flows but do not have their analogues for open flows. Also,
as there is growing evidence that linear mechanisms play a crucial role in sustaining
large-scale structures in fully turbulent jets, a firm basis for linear stability theory will
clearly be useful for their analysis.

We expect that the growth of perturbations according to inviscid linear stability theory,
as demonstrated in this study in a laminar jet, can also occur in other open flows, such
as wakes and free shear layers, for which the instability mechanism, namely inviscid
instability generated by an inflection point of the velocity profile, is similar to that of
jets.
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