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It is known that the complex eigenfrequencies of one-dimensional systems of large but
finite extent are concentrated near the asymptotic curve determined by the dispersion
relation of an infinite system. The global instability caused by uppermost pieces of
this curve was studied in various problems, including hydrodynamic stability and fluid–
structure interaction problems. In this study, we generalise the equation for the asymptotic
curve to arbitrary frequencies. We analyse stable local topology of the curve and prove
that it can be a regular point, branching point or dead-end point of the curve. We give
a classification of unstable local tolopogies, and show how they break up due to small
changes of the problem parameters. The results are demonstrated on three examples:
supersonic panel flutter, flutter of soft fluid-conveying pipe, and the instability of rotating
flow in a pipe. We show how the elongation of the system yields the attraction of the
eigenfrequencies to the asymptotic curve, and how each locally stable curve topology is
reflected on the interaction of eigenfrequencies.

Key words: absolute/convective instability, flow-structure interactions, instability control

1. Introduction
Many fluid flows that play important roles in technical and natural processes occupy
spatial domains elongated in one direction: flows in pipes, channels and flumes, film
flows, boundary layers, jets, etc. To study the stability of such flows, it is often assumed
that the domain is infinitely long, and a special class of perturbations in the form of
travelling waves ∼ ei(kx−ωt) is analysed. However, infinitely long flows do not exist in
reality, whereas the relation between the stability of infinitely long and finite-length flows
turns out to be tricky. An instructive example is provided by rotating inviscid flow in a pipe
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studied by Wang & Rusak (1996): if the rotation speed is sufficiently large, then the flow in
a long finite-length pipe is always unstable, while that in an infinitely long pipe is neutrally
stable. Plane Poiseuille flow serves as an opposite example: it is unstable for supercritical
Reynolds numbers in the infinitely long channel, but a finite-length (no matter how long!)
channel makes the flow stable.

The drastic difference between infinitely long and finite-length systems is caused by
domain boundaries in the finite-length case: a single travelling wave cannot satisfy the
boundary conditions, thus cannot exist in the bounded domain; instead, wave reflection
from the boundaries takes place. That is why in finite-length systems, instead of travelling
waves, eigenmodes of the form ∼ A(x) e−iωt drive the stability properties, where A(x)
must satisfy the boundary conditions.

However, despite the disappointing examples showing defectiveness of infinitely long
theoretical models of real finite-length flows, there exists a general framework for treating
long finite-length problems, which is known as global instability theory. Namely, in
spatially one-dimensional systems of large but finite domain, the complex eigenfrequency
spectrum is concentrated around a specific asymptotic curve in the complex plane, and
this curve is determined by the dispersion relation of an infinitely long system, as proved
by Kulikovskii (1966a); see also Pitaevskii & Lifshitz (1981, § 65). If part of such a curve
lies in the upper half-plane of the complex ω plane, then a system of sufficiently long
length is unstable; such instability is called global. Recall that the instability condition of
an arbitrarily long but finite system in general differs from the instability condition of an
infinitely long system.

Note that some confusion exists in terminology: ‘global instability’ is attributed to
spatially homogeneous finite-length systems (Kulikovskii 1966a), as well as to spatially
developing infinitely long systems (Le Dizés et al. 1996). Although both approaches
can be united, because turning points in spatially developing flows can be considered as
effective boundary conditions that reflect and refract incident waves (Kulikovskii 1985),
the mathematical apparatus used in both theories is different. To be specific, in this study
we consider ‘global instability’ in the first sense, i.e. in the context of homogeneous
finite-length systems.

Global instability in finite-length problems has been studied in physical systems of a
very different nature: Poiseuille flows in a pipe of finite length (Kulikovskii 1966b, 1968;
Aizin & Maksimov 1978), thermocapillary convection (Priede & Gerbeth 1997), jet flows
of a liquid (Shugai & Yakubenko 1997; Yakubenko 1997), plasma instability (Kulikovskii
1970), elastic plates in a flow of an incompressible fluid (Peake 2004), supersonic panel
flutter (Vedeneev 2016), spiral waves (Echebarria, Hakim & Henry 2006), flames (Nichols,
Chomaz & Schmid 2009), and axisymmetric Couette flows of a magnetic fluid (Priede &
Gerbeth 2009). Similar analysis has also been used in the studies of thermoplasticity
models (Kameniarzh 1972), vibrations of fluid-conveying pipes (Kulikovskii & Shikina
1988; Doaré & de Langre 2002), flows over cavities (Tuerke et al. 2015), and other
problems (Doaré & de Langre 2006).

Kulikovskii (1966a) obtained the equation of the curve, which serves as an attractor of
eigenvalues for large system lengths, only partially, by considering its uppermost sections
in the complex ω plane, which correspond to the fastest growing modes. This is sufficient
to obtain the stability criterion, but in many cases, e.g. to control the instability, it is
also important to know how the instability modes are generated, through the analysis of
the eigenfrequency loci and interactions in the complex plane prior to the transition to
instability. To this end, in this work, the equation of the asymptotic curve is generalised to
the case of arbitrary eigenfrequencies, which is discussed in § 2. In § 3, we analyse possible
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local topologies of this curve, and show that only three types of topology are stable with
respect to small changes of the problem parameters. Bifurcations of the curve topology
are analysed in § 4. A special consideration is necessary for the imaginary ω axis, which is
discussed in § 5. In § 6, we demonstrate theoretical results of this work on three examples:
supersonic panel flutter, flutter of a soft fluid-conveying pipe, and the stability of rotating
pipe flow. Finally, in § 7 we summarise the results of this study.

2. Frequency equation for a one-dimensional system of large length
Consider a spatially one-dimensional homogeneous system, in which we are interested in
the eigenfrequency spectrum. The system length is L , so boundary conditions are assigned
at x = ±L/2. At this point, we do not specify the physical nature of the problem; one may
assume, say, plates or shells in an axial flow (either external of internal).

2.1. General properties of the dispersion relation for an infinite-length problem
First, let us consider the general properties of solutions of the dispersion equation of an
infinitely long system

D(k, ω)= 0, (2.1)

where k and ω are the complex wavenumber and frequency of travelling wave ∼ ei(kx−ωt).
We will assume that the system satisfies the causality principle, that is, there is a finite
value P = max

k∈R,1� j�M
Imω j (k), where M is the number of eigenfrequencies ω j (k). This

condition means that travelling waves with real wavenumbers cannot grow arbitrarily
fast. If this condition is not satisfied, then a smooth solution to the Cauchy problem
does not exist (the system blows up), which means that the mathematical problem is not
well-posed. In this case, the mathematical formulation of the physical problem must be
updated to exclude infinitely fast growing perturbations. As a rule, unlimited growth,
if it occurs, takes place as k → ∞; in this case, the mathematical formulation of the
problem must be modified to take into account the damping mechanisms of short-wave
disturbances.

Under this condition, for Imω> P , all solutions k j = k j (ω) of the dispersion relation
are complex. Let us number the roots of the dispersion equation k = k(ω) in descending
order of the imaginary part for large Imω, and let us divide them into two groups: Im k j >

0, j = 1, . . . , s, and Im k j < 0, j = s + 1, . . . , N (figure 1a). Waves corresponding to
wavenumbers from the first group are right-travelling, and those from the second group
are left-travelling (see § 2.3 of Briggs 1964; Ashpis & Reshotko 1990). Then the criterion
of the well-posedness of the boundary value problem can be formulated as follows
(Hersh 1964): the number of boundary conditions at each boundary of the system x =
±L/2 must be equal to the number of waves travelling away from that boundary, that is,
s conditions at the left-hand end (x = −L/2), and N − s conditions at the right-hand end
(x = L/2) must be specified. This ensures unambiguous amplitudes of reflected waves
produced by waves incident to each boundary.

When lowering Imω, the wavenumbers move in their complex plane and ‘mix’ with
each other, as shown schematically in figure 1(b). As a result, for arbitrary values of ω,
it is not possible to distinguish left- and right-travelling waves, and the only way to do
that is to increase Imω and track the sign of Im k(ω). To give a physical interpretation,
consider a travelling wave produced by a harmonic point source oscillating with a real
frequency ω (figure 2a). Let the wave be spatially amplifying in the positive x-direction
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Im k

Re k

Im k

Re k

(b)(a)

Figure 1. Location of wavenumbers k(ω) in the complex plane for Imω> P: (a) right- and left-travelling
waves are well separated by the shaded region; (b) their loci as Imω decreases.

x x

(a) (b)

Figure 2. (a) Waves produced by a harmonic point source with a real frequency; distinction between right-
travelling amplified and left-travelling damped waves is not possible. (b) The same waves produced by a
temporarily amplified point source: right- and left-travelling waves are well distinguished by the sign of Im k.

(i.e. Im k(ω) < 0), which can signify that it is either a left-travelling damped wave, or
a right-travelling amplified wave. Note that neither phase nor group speed can provide
information about the direction of the wave motion. Increasing Imω means adding
temporal amplification to the source. Regardless of spatial amplification (or damping) Im k
at the real frequency, it will be dominated by sufficiently large Imω so that the wave will
become spatially damped when moving away from the source, and the wave direction will
be clear through the sign of Im k (figure 2b).

2.2. Frequency equation for a finite-length problem
To search for eigenmodes of the finite-length problem, we consider a linear combination
of N travelling waves

N∑
m=1

Cm ei(km(ω) x−ωt), (2.2)

which is substituted into N boundary conditions, which leads to a linear algebraic system
of equations for the amplitudes Cm . From the condition for the existence of a non-zero
solution, we obtain the frequency equation
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det A =

a11e−ik1 L / 2

as1e−ik1 L / 2

a(s+1)1e−ik1 L / 2

aN1eik1 L / 2 aN2eik2 L / 2 aNNeikN L / 2

a(s+1)2eik2 L / 2 a(s+1) N eikN L / 2
as2e−ik2 L / 2 asNe−ikN L / 2

a12e−ik2 L / 2 a1Ne−ikN L / 2. . .

. . .

. . .

. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= 0,

(2.3)

where ai j = ai j (k j (ω), ω) are coefficients determined by boundary conditions. The
eigenfrequencies of a finite-length system are the solutions of this equation. Note that
the first s lines in the determinant have terms with exponent e−ik j L , while the remaining
(N − s) lines have eik j L , where s is equal to the number of boundary conditions specified
on the left-hand end, which, in turn, is determined by the number of waves moving to the
right from this end at large Imω.

2.3. Frequency equation form for the case of large L

Let us assume that the length of the system is sufficiently large, i.e. L � 1. For any given
ω, let us sort the wavenumbers in descending order of the imaginary part Im k j (ω):

Im k1(ω)� Im k2(ω)� . . .� Im ks(ω)� Im ks+1(ω)� . . .� Im kN (ω). (2.4)

This sorting is natural for Imω> P as explained in § 2.1, but now we use it for any ω. Then
for L → ∞, the leading term of the determinant (2.3) is the product of the exponential
factor

e−i(k1(ω)+···+ks−1(ω)+ks(ω)−ks+1(ω)−ks+2(ω)−···−kN (ω))L/2 (2.5)

and two minors of the matrix A, composed of the coefficients ai j : one has order s and
occupies the upper left corner, the other is of order N − s and occupies the lower right
corner of this matrix. The next highest term is the product of the exponential factor

e−i(k1(ω)+···+ks−1(ω)−ks(ω)+ks+1(ω)−ks+2(ω)−···−kN (ω))L/2, (2.6)

where the signs of ks and ks+1 are reversed, and its coefficient is the product of the same
minors of the matrix obtained from A by permutation of the sth and (s + 1)th columns.
Thus keeping the two main terms in (2.3), and cancelling by the exponent (2.5), we obtain
the leading-order form of (2.3) as L → ∞:

|As | |AN−s | + |A′
s | |A′

N−s | ei(ks(ω)−ks+1(ω))L = 0. (2.7)

We now proceed to the analysis of solutions of (2.7) for L � 1. Since L is present only
in the exponential factor, three cases are possible.

(i) If Im ks(ω) �= Im ks+1(ω) for a given frequency ω, then as L → ∞, the second term
becomes negligible so that (2.7) yields

|As(ω)||AN−s(ω)| = 0. (2.8)

If the roots k1, . . . , ks for a given value of ω correspond to right-travelling waves
(i.e. these are the same branches of wavenumber as for Im ω→ +∞), then the roots
of this equation are called ‘one-sided frequencies’ (Kulikovskii 1966a). Indeed, if we
consider a semi-infinite system in which x ∈ [−L/2,+∞), and assume the decaying
condition as x → +∞, then in a linear combination of waves (2.2), it is necessary to
retain only s right-travelling waves. Their substitution into the s boundary conditions
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at x = −L/2 gives the frequency equation

|As(ω)| = 0. (2.9)

Similarly, the natural frequencies of a semi-infinite system in which x ∈ (−∞, L/2]
are given by the frequency equation

|AN−s(ω)| = 0. (2.10)

Thus for a system that is finite in both directions, the spectrum of one-sided
frequencies (2.8) is the union of the frequency spectra of two semi-infinite systems,
which explains the name of this part of the spectrum. If one of these frequencies has a
positive imaginary part, then the system is unstable; in this case, the instability is also
called one-sided.

(ii) Next, assume that (2.8) is satisfied, but the roots k1, . . . , ks (or ks+1, . . . , kN ,
depending on which multiplier in (2.8) is zero) include both right- and left-travelling
waves. This is possible due to ‘mixing’ of wavenumbers at small Imω, as discussed
in § 2.1. We will call such frequencies ‘anomalous one-sided’. They are not truly one-
sided frequencies, because in the semi-infinite problem, only waves moving in one
direction are present. Although the existence of such frequencies is in general possible,
it seems counterintuitive, and the authors are not aware of any physical system where
such eigenfrequencies exist.

(iii) If (2.8) is not satisfied, then as L → ∞, the first and second terms in (2.7) must be
balanced to cancel each other, which yields

Im ks(ω)= Im ks+1(ω). (2.11)

Equation (2.11) defines the curve Ω on the complex plane ω, which has the following
property: for large values of L in the vicinity of any of its points, there is always
a frequency that satisfies (2.7), and vice versa, any such frequency that is not one-
sided lies in the vicinity of this curve. Thus eigenfrequencies that are not one-sided,
although they form a discrete set, are located near the curve Ω , more closely and
densely concentrating around the curve, the greater the length of the system L . In
other words, Ω attracts eigenfrequencies as L → ∞. If a piece of Ω is located in
the upper half-plane ω, then the frequencies located near this piece correspond to
growing disturbances. The spectrum defined by (2.11), and the instability caused by
this spectrum, are called global (Kulikovskii 1966a).

Thus for sufficiently large L , the frequency spectrum is separated into a regular one-
sided, anomalous one-sided and global spectra. The larger L , the higher the accuracy of
such a separation, namely, the more accurate the transition from (2.3) to (2.7) and then to
(2.8) and (2.11).

It is worth mentioning that the one-sided spectrum essentially depends on the boundary
conditions, because the matrices in (2.8) consist of ai j that come from the boundary
conditions. On the contrary, (2.11) does not depend on the particular boundary conditions,
which govern the particular distribution of the eigenfrequencies along the Ω curve, but
not the curve itself.

Note that in the case of polynomial coefficients ai j (ω), the one-sided spectrum is
always finite (and often absent), while the global frequencies usually form a countable
set. Therefore, in this study, we will limit ourselves to the analysis of the configuration of
the global spectrum.
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Im k

Re k

Im k

Re k

(b)(a)

Figure 3. (a) Proof of the fastest growing global mode formation by the waves travelling in opposite directions.
(b) Proof of the instability of the infinite-length system following from the global instability of the finite-length
system. Arrows show the wavenumber loci with increasing Imω; empty circles correspond to larger Imω than
filled circles.

2.4. Properties of the global spectrum
We have proved that all frequencies of the global spectrum are located near the curve
(2.11). Let us now prove the converse statement: near every point of this curve, there exist
global frequencies, if L is sufficiently large. Indeed, consider a point ω0 satisfying (2.11),
and nearby located points ω=ω0 +�ω. Assume that the Taylor expansion

ks − ks+1 = a + b�ω+ o(ω), a ∈R, (2.12)

is valid. Solving the frequency equation (2.7), we find

i(ks − ks+1)= ia + ib�ω= 1
L

ln

(
−|As | |AN−s |

|A′
s | |A′

N−s |

)
+ 2πni

L
, n ∈Z. (2.13)

Taking real and imaginary parts of this equality, and denoting b = br + ibi , �ω=�ωr +
i �ωi , we get

bi �ωr + br �ωi = − 1
L

ln

(
−|As | |AN−s |

|A′
s | |A′

N−s |

)
, (2.14)

br �ωr − bi �ωi = 2πn

L
− a. (2.15)

Note that one should select such n that provide 2πn/L ≈ a to ensure the expansion
(2.12). The determinant of this system is non-zero, so there are solutions �ω such that
�ω→ 0 as L → ∞. Thus we have proved that each point of the Ω curve attracts discrete
eigenfrequencies of the boundary value problem as L → ∞.

Next, let us prove that the most unstable global eigenfrequencies are located near
sections of Ω in which the roots ks , ks+1 correspond to waves moving in opposite
directions. Indeed, if Im ks(ω)= Im ks+1(ω), but the branches ks,s+1(ω) are not the same
as for Imω> P (as shown in figure 3(a) by filled circles), then increasing Imω will
necessarily result in motion of wavenumbers to their ‘native’ half-planes where they are
located for Imω> P . Among several possible equalities Im ks(ω)= Im ks+1(ω), the last
one (i.e. at the largest possible Imω) will occur for the branches ks,s+1(ω) from different
groups (figure 3(a), empty circles). However, this statement is in general not correct for
arbitrary points of Ω: due to possible redistribution of the order of Im k j at small Imω,
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the equality Im ks(ω)= Im ks+1(ω) can correspond to the waves moving in the same
direction, as shown in figure 3(a) by filled circles.

Now let us prove that if the finite-length problem is globally unstable (i.e. there exist
points of the Ω curve with Imω> 0), then the infinitely long problem is necessarily
unstable. Consider two wavenumbers ks,s+1 with equal imaginary parts (figure 3b)
corresponding to the largest Imωfin. Since they move to opposite half-planes as Imω

increases, one of them necessarily crosses the real k axis. This means that there exist
k ∈R with Imω(k)� Imωfin > 0, i.e. there is a growing travelling wave, which finalises
the proof. Note that the maximum growth rate of the infinite-length problem turns out to
be not less than the maximum global growth rate of the finite-length problem.

A converse statement is in general incorrect: instability of the infinite-length problem
does not necessarily mean global instability of the finite-length problem. However, if the
instability of the infinite-length problem is absolute, then the finite-length problem is
globally unstable. This becomes evident if one notes that the absolute instability frequency,
i.e. saddle point of the ω(k) function, at which dω/dk = 0, corresponds to the branch point
of the inverse function k(ω), at which ks = ks+1. Moreover, if the ω(k) saddle point is the
absolute instability frequency, then the branches ks,s+1 correspond to waves travelling in
opposite directions. Of course, at such points, the equality (2.11) is also satisfied, i.e. they
belong to the Ω curve. In § 3 we will show that such points are dead ends of the Ω curve.

We stress that the global instability curve only represents a limit state of the global
spectrum as L → ∞. For small and moderate lengths L , the location of eigenfrequencies
in the complex plane is governed by the full frequency equation (2.3) and can be arbitrarily
far from the Ω curve. In particular, instability of finite-length system is possible when the
infinite-length system is stable. However, since the global instability is impossible for a
stable infinite-length system, sufficiently long systems will always become stable.

The latter has one important exception: neutral global stability. In this case, we can only
guarantee that the growth rate in the finite-length system is Imωfin → 0 as L → ∞, but
we cannot guarantee that the growth rate is not positive. Such a seemingly contradicting
example is provided by the rotating pipe flow problem mentioned in § 1: a finite-length
problem of arbitrarily large length is unstable, whereas an infinitely long problem is stable.
In that problem, the infinite problem is stable only neutrally; the finite-length problem is
also globally neutrally stable. Consequently, finite-length problem eigenfrequencies have
Imω≈ 0. But it turns out that while the growth rate Imω tends to zero as L → ∞, its sign
stays positive. This case will be considered in § 6 in more detail.

2.5. Physical interpretation
The derivation of the equation for the global instability asymptotic curve (2.11) was
performed in an abstract mathematical manner. To provide a more intuitive insight into
the structure of global modes, consider waves moving in the system.

Let us imagine that at the left-hand end of the system, x = −L/2, we excite a disturbance
in the form of s right-travelling waves:

s∑
j=1

Cj ei(k j x−ωt). (2.16)

When they reach the right-hand end, x = L/2, the amplitude of one of the waves, namely
the sth wave, significantly exceeds the amplitudes of the remaining waves, since the
wavenumbers k j are numbered in descending order of the imaginary part, which means
that the sth wave has the largest spatial growth rate or the smallest spatial decay rate
among right-travelling waves (figure 4a). Therefore, the remaining waves can be ignored
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ks

k2k1

L/2–L/2 x L/2–L/2 x

ks + 1

kN

(a) (b)

Figure 4. Hierarchy of (a) right-travelling and (b) left-travelling waves. Arrows show the directions of the
waves’ motion.

at the reflection process from the right-hand end. After the reflection of the sth wave,
N − s reflected left-travelling waves leave the right-hand end. For similar reasons, the
amplitudes of all waves, except for the (s + 1)th one, can be neglected when they arrive at
the left-hand end x = −L/2 (figure 4b).

Thus for large L , the dominant role in the reflection process is played by two waves
running in opposite directions: the sth and (s + 1)th waves.

Let us calculate the amplitudes of these waves at different moments in time. When the
wave Csei(ks x−ωt), excited at the left-hand end, reaches the right-hand end, its amplitude
is equal to Cse−Im ks L/2 (the factor e−iωt can be ignored, since it is the same for all waves).
After reflection, it will turn into the wave As(s+1)Cse−Im ks L/2 eIm ks+1 L/2 ei(ks+1x−ωt),
where As(s+1) is the reflection coefficient of the sth wave into the (s + 1)th wave at the
right-hand end. When the latter wave reaches the left-hand end, its amplitude will be equal
to As(s+1)Cse−Im ks L/2 eIm ks+1 L . After reflection from the left-hand end, it will turn into
the wave A(s+1)s As(s+1)Cse−Im ks L/2 eIm ks+1 L e−Im ks L/2 ei(ks x−ωt), where A(s+1)s is the
reflection coefficient of the (s + 1)th wave into the sth wave at x = −L/2. Consequently,
after two reflections, we obtain the originally excited wave, but in general of different
phase and amplitude.

In the case when the amplitude and phase of the sth wave after two reflections coincide
with the initial ones, the described process will be repeated cyclically in a self-sustained
manner, i.e. it will represent an eigenmode. The coincidence condition has the form

A(s+1)s As(s+1) eIm(ks+1−ks)L = 1. (2.17)

For large L , it can be satisfied only if Im ks(ω)≈ Im ks+1(ω), that is, for ω, lying in the
neighbourhood of the curve (2.11). On the other hand, in the neighbourhood of any point
determined by (2.11), one can find a frequency that satisfies (2.17).

Physically, the reflection coefficients that are determined by the boundary conditions
become unimportant for large L , because the amplitude of every wave is governed mostly
by its exponential spatial growth rate accumulated over the long domain. The initial
amplitudes at each end that depend on the reflection coefficients can be dominated by the
spatial growth by just a slight change in the frequency. That is why the eigenfrequencies
in the long domain become insensitive to the boundary conditions, yielding the global
spectrum limit. The condition (2.11) means that the spatial growth rate of a left-travelling
wave and spatial decay rate of a right-travelling wave (or vice versa) coincide, which
provides an almost unaltered amplitude of the doubly reflected wave. Small variation of the
frequency near the one satisfying (2.11) provides fine tuning of the amplitude and phase to
get truly original waves and organise a self-sustained reflection process.
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Figure 5. Local structure of curve Ω: (a) case 1a, regular point; (b) case 1b, intersection of two curves at
angle π/2; (c) case 2, branch point k(ω), dead end of the curve.

Summarising, we conclude that global eigenmodes have form of a superposition of two
most amplified (or least damped) waves moving in opposite directions, while at the ends
of the system, they transform into each other.

3. Local topology of the asymptotic Ω curve
Let us investigate possible local configurations of the curve Ω , which is determined, as
established above, by the system

Im k1(ω)� Im k2(ω)� . . .� Im ks(ω)= Im ks+1(ω)� . . .� Im kN (ω). (3.1)

Let there be a point ω0 at the curve. Let us analyse which points ω close to ω0 also
belong to the curve. Consider several possible cases.

1. Let the roots ks , ks+1 at the point ω0 have equal imaginary parts, and let the imaginary
parts of ks−1(ω) and ks+2 be different. In addition, let the point ω0 not be a branch
point of ks , ks+1. Then the following Taylor expansions are valid:

ks(ω)= ks(ω0)+ a1(ω−ω0)+ a2(ω−ω0)
2 + · · · ,

ks+1(ω)= ks+1(ω0)+ b1(ω−ω0)+ b2(ω−ω0)
2 + · · · , (3.2)

where the expansion coefficients a j and b j , j = 1, 2, . . ., are functions of ω0.

(a) If a1(ω0) �= b1(ω0), then the equality Im ks(ω)= Im ks+1, up to linear terms,
reduces to the equation of the straight line Im((a1 − b1)(ω−ω0))= 0. Such points
ω0 are regular points of the curve Ω; the curve passes through them without any
bifurcations (figure 5a).

(b) If a1(ω0)= b1(ω0)⇔ dks/dω= dks+1/dω, but a2(ω0) �= b2(ω0), then, up to
quadratic terms, we obtain Im((a2 − b2)(ω−ω0)

2)= 0. Let us denote ω−ω0 =
w eiϕ , a2 − b2 = A eiα . Then the equation can be rewritten as

Aw2 ei(2ϕ+α) = q eiπm ⇒ 2ϕ + α = πm ⇒ ϕ = πm

2
− α

2
. (3.3)

Here, A and α are the known modulus and argument of a2 − b2, w and ϕ are the
unknown modulus and argument of the ω increment, q is an arbitrary non-negative
number, and m ∈N. Thus the equation of the curve gives four directions with angle
π/2 between them. Locally at a given point, the curve represents the intersection
of two straight lines with angle π/2 (figure 5b). Note that the presence of such
points on the curve is a special situation, since the equation dks/dω= dks+1/dω
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has a finite number of roots, and the passage of the curve Ω through such roots is,
generally speaking, an exceptional situation.

(c) At points where a larger number of derivatives coincide, d j ks/dω j = d j ks+1/dω j ,
j = 1, . . . p, locally the curve Ω has the form of the intersection of j + 1 straight
lines with angles π/(p + 1) between adjacent rays. The existence of such points is
an extremely rare situation and is not considered here in more detail.

2. As before, let the roots ks , ks+1 at the point ω0 have equal imaginary parts, and the
imaginary parts ks−1(ω) and ks+2 are different from them. But now the point ω0 is the
branch point of ks , ks+1. Then the following expansions are valid:

ks,s+1(ω)= k(ω0)± a
√
ω−ω0 + · · · , (3.4)

where the ellipsis denotes the regular part of the expansion. Let us denote a = A eiα .
Then the equation of the curve Ω gives

Im(a
√
ω−ω0)= 0 ⇒ Im(A

√
w ei(α+ϕ/2))= 0 ⇒ α+ ϕ/2 = πm

⇒ ϕ = −2α − 2πm. (3.5)

As can be seen, there is a unique direction for the continuation of the Ω curve from
the point ω0; thus the branch points ks,s+1 are the dead ends of Ω (figure 5c).
It is well known that the branch point of the k(ω) function corresponds to a saddle
point of the reverse function ω(k), which is associated with absolute instability of
an infinitely long system, if in this point Imω> 0. Consequently, any configuration
of the curve Ω , which partially occupies the upper half-plane, but dead ends, if
any, lie in the bottom half-plane, corresponds to the global instability of a finite-
length system, which is not accompanied by absolute instability of the infinite-length
system. Such a situation resembles global instability of an infinitely long but spatially
developing system, which takes place without local absolute instability (Kulikovskii
1993; Abdul’manov & Vedeneev 2023).

3. Let three roots ks , ks+1, k j at the point ω0 have equal imaginary parts (and branching
of these three roots does not take place), and imaginary parts of the remaining roots are
different. Without loss of generality, we assume that the root k j belongs to the second
group of waves. The curveΩ in a neighbourhood of ω0 is reduced to the union of three
sets: ⎧⎨

⎩
Im ks(ω)= Im ks+1(ω) > Im k j (ω),

Im ks(ω)= Im k j (ω) > Im ks+1(ω),
Im ks+1(ω)= Im k j (ω) > Im ks(ω).

(3.6)

For the third root, we denote the expansion coefficients in the neighbourhood of ω0
as k j (ω)= k j (ω0)+ c1(ω−ω0)+ c2(ω−ω0)

2 + · · · . As before, we will consider all
possible cases.

(a) Case a1 �= b1 �= c1. Then (3.6) is reduced to the union of three rays:⎧⎨
⎩

Im((a1 − b1)(ω−ω0))= 0, Im((a1 − c1)(ω−ω0)) > 0,
Im((a1 − c1)(ω−ω0))= 0, Im((a1 − b1)(ω−ω0)) > 0,
Im((b1 − c1)(ω−ω0))= 0, Im((b1 − a1)(ω−ω0)) > 0.

(3.7)

It is seen that at point ω0, the Ω curve diverges in three directions; this case
is shown in figure 6(a). The angles between the rays are determined by the
coefficients a1, b1, c1, and, generally speaking, are arbitrary.
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Figure 6. Local structure of the Ω curve: (a) case 3a, merging of three curves at arbitrary angles; (b,c) case
3b, four rays, two of which are perpendicular, the other two tangential.

(b) Case a1 = b1 �= c1. In this case, the set of points on the curve is determined by the
conditions⎧⎨

⎩
Im((a2 − b2)(ω−ω0)

2)= 0, Im((a1 − c1)(ω−ω0)) > 0,
Im((a1 − c1)(ω−ω0)+ (a2 − c2)(ω−ω0)

2)= 0, Im((a2 − b2)(ω−ω0)
2) > 0,

Im((b1 − c1)(ω−ω0)+ (b2 − c2)(ω−ω0)
2)= 0, Im((b2 − a2)(ω−ω0)

2) > 0.
(3.8)

As can be seen, the last two relations give parts of the curve diverging in opposite
directions, with the same tangent, but in general with different curvature. The
first relation defines the parts of two perpendicularly intersecting rays lying in the
half-plane Im((a2 − b2)(ω−ω0)

2) > 0. The resulting configurations are shown in
figures 6(b,c). Since the angle between the perpendicular lines and the other
straight line is arbitrary, it is possible to pass a straight section both outside
(figure 6b) and inside (figure 6c) the angle.

(c) Case a1 = b1 = c1. The curve is determined by the expressions⎧⎨
⎩

Im((a2 − b2)(ω−ω0)
2)= 0, Im((a2 − c2)(ω−ω0)

2) > 0,
Im((a2 − c2)(ω−ω0)

2)= 0, Im((a2 − b2)(ω−ω0)
2) > 0,

Im((b2 − c2)(ω−ω0)
2)= 0, Im((b2 − a2)(ω−ω0)

2) > 0.
(3.9)

Each expression specifies a part of two perpendicular lines lying in opposite
sectors defined by a pair of other perpendicular curves; that is, one straight line
(figure 7a). As a result, we obtain three intersecting straight lines, the angles
between which are arbitrary (figure 7b).

In cases (b) and (c), it was assumed that while the coefficients of the linear terms of
the expansion k(ω) coincide, the coefficients of the quadratic terms are different. The
simultaneous coincidence of these and the following coefficients is not considered,
because it is an extremely special case.

4. Let three roots ks , ks+1, k j at the point ω0 have equal imaginary parts; two of them
have a common branch point, and the remaining roots are different from them. Then
the expansions of the roots have the form

ks,s+1(ω)= k(ω0)± a
√
ω−ω0 + a1(ω−ω0)+ · · · ,

k j (ω)= k j (ω0)+ c1(ω−ω0)+ · · · . (3.10)
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Im ω

Re ω

Im ω

ω0

Ω

Re ω

(a) (b)

Figure 7. Local structure of theΩ curve. (a) A set of points satisfying one of three expressions in (3.9). Sectors
satisfying the inequality are shaded; solid and dashed lines satisfy the equality and fall or do not fall into the
sector, respectively. (b) Case 3c, three intersecting curves.

The equation of the curve Ω , (3.6), is reduced to the union of the following sets:

⎧⎨
⎩

Im(a
√
ω−ω0)= 0, Im(a

√
ω−ω0 + (a1 − c1)(ω−ω0)) > 0,

Im(a
√
ω−ω0 + (a1 − c1)(ω−ω0))= 0, Im(a

√
ω−ω0) > 0,

Im(−a
√
ω−ω0 + (a1 − c1)(ω−ω0))= 0, Im(−a

√
ω−ω0) > 0.

(3.11)

Taking into account each equality, the corresponding inequalities can be rewritten as

⎧⎨
⎩

Im(a
√
ω−ω0)= 0, Im((a1 − c1)(ω−ω0)) > 0,

Im(a
√
ω−ω0 + (a1 − c1)(ω−ω0))= 0, Im((c1 − a1)(ω−ω0)) > 0,

Im(−a
√
ω−ω0 + (a1 − c1)(ω−ω0))= 0, Im((c1 − a1)(ω−ω0)) > 0.

(3.12)

As can be seen, the three ‘possible’ curves defined by equalities coincide in the main
term, i.e. leave point ω0 in the same direction. The inequalities determine which of
these curves actually belong to Ω , which gives us two cases.

(a) If the first inequality is satisfied for a given direction (and, accordingly, the
second and third are not satisfied), then a single curve emerges from the point ω0
(figure 8a). It is determined by the expression Im ks = Im ks+1 > Im k j . That is,
the root k j catches up with the branching pair of roots only at the branch point.

(b) If the second and third inequalities are satisfied for a given direction (and,
accordingly, the first one is not satisfied), then two curves that have a common
tangent emerge from the point ω0 (figure 8b). They are determined by the
expressions Im ks = Im k j > Im ks+1 and Im ks+1 = Im k j > Im ks , i.e. each
curve is formed by the coincidence of the imaginary part k j with one of the
branching roots. In this case, there is no curve formed by two branching roots:
in the latter case, the root k j goes into the other group of roots, i.e. such a curve
does not govern the asymptotic location of eigenfrequencies.

5. The last possible case of the imaginary part coincidence of the three roots ks , ks+1, k j
is their common branch point, which can be considered as a coincidence of two branch
points. Then each root is represented as

k(ω)= k(ω0)+ a(ω−ω0)
1/3 + · · · . (3.13)
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Figure 8. Local structure of the Ω curve: (a) case 4a, end of the Ω curve; (b) case 4b, merging and ending of
two curves with a common tangent.

Accurate to rotation and scaling of the complex plane, we can set a = 1. Then, denoting
ω−ω0 =w eiϕ , we rewrite (3.6) as⎧⎨

⎩
Im(eiϕ/3(e2iπ/3 − 1))= 0, Im(eiϕ/3(e2iπ/3 − e−2iπ/3)) > 0,
Im(eiϕ/3(e−2iπ/3 − 1))= 0, Im(eiϕ/3(e−2iπ/3 − e2iπ/3)) > 0,
Im(eiϕ/3(e2iπ/3 − e−2iπ/3))= 0, Im(eiϕ/3(e2iπ/3 − 1)) > 0.

(3.14)

The equalities are equivalent to⎧⎨
⎩
ϕ/3 = πm − Arg(e2iπ/3 − 1),
ϕ/3 = πm − Arg(e−2iπ/3 − 1),
ϕ/3 = πm − Arg(e2iπ/3 − e−2iπ/3).

(3.15)

Since the arguments of the numbers are respectively 5π/6, −5π/6, π/2, satisfying the
inequalities gives ϕ/3 = π/6, 5π/6, −π/2, which yields the only direction ϕ = π/2.
This result can also be obtained from the geometric location of the cube root values
when walking around the point ω0 in the ω plane. Thus the local behaviour of Ω
coincides with case 2: the branch point of the three roots is the end of the Ω curve
(figure 5c).

6. Finally, consider the coincidence of imaginary parts of four roots ks , ks+1, k j , k j+1;
we restrict ourselves by the general case when none of them have a branch point at the
point of coincidence. Two types of boundary conditions in the problem are possible,
which dictate two possible cases: either the Ω curve satisfies

Im ks > Im ks+1 = k j > Im k j+1 (3.16)

(symmetric configuration of coinciding roots), or

Im ks = Im ks+1 > Im k j , Im k j+1 (3.17)

(non-symmetric configuration; the inequality can be reversed without loss of
generality). Depending on the particular boundary conditions and expansion
coefficients, from three to six rays can emerge from this point; their angles are in
general arbitrary.

All possible local topologies of Ω of general form are considered above. Cases when
the imaginary parts of five or more roots k(ω) coincide, and also when both the imaginary
parts of the roots k(ω) and two or more derivatives dpk/dωp coincide, are not considered
as too specific.
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ω0

Ω

Re ω

Ω

Figure 9. Bifurcation of case 1b: exchange of branches of two curves; arrows indicate the change of Ω curve
when external parameters are changed.

4. Bifurcations of the Ω curve when changing the problem parameters
Assume that the physical problem under consideration has external parameters that
determine the configuration of the Ω curve, e.g. Mach number or Reynolds number. It
is obvious that with their small change, cases 1a (regular point of the curve), 2 (dead end
of the curve), 3a (connection of three curves) are stable, i.e. local curve topology is not
changed. The remaining cases, 1b, 1c (the intersection of two curves at angle π/2, or a
larger number of curves at equal angles), 3b, 3c, 4a, 4b, 5, 6, in the general case, break up
with an arbitrarily small change in the parameters. In this section, we analyse how such a
break-up occurs.

4.1. Bifurcation of cases 1b, 1c
It is easy to see that the case 1b describes a saddle-like interaction and exchange of two
segments of the curve. Indeed, the equation of the Ω curve in a neighbourhood of ω0,
accurate to rotation and scaling of the complex plane ω, has the form Im(εω+ω2)= 0.
Case 1b corresponds to ε= 0; for small values of ε, we obtain the equation of a hyperbola
with asymptotes corresponding to ε= 0. This bifurcation is shown in figure 9.

The break up of the case 1c occurs in a completely similar way, with the difference that
there is an interaction and exchange of three or more segments of the curve.

4.2. Bifurcation of cases 4a, 4b
With a small change in the problem parameters, the imaginary parts of k(ω0) and k j (ω0) in
the expansions (3.10) become different by a small value ε (small changes in the parameters
ω0, a, a1, c1 do not matter). Then the expressions (3.12) will be rewritten as⎧⎨
⎩

Im(a
√
ω−ω0)= 0, Im((a1 − c1)(ω−ω0)) > ε,

Im(a
√
ω−ω0 + (a1 − c1)(ω−ω0))= ε, Im((c1 − a1)(ω−ω0)) >−ε,

Im(−a
√
ω−ω0 + (a1 − c1)(ω−ω0))= ε, Im((c1 − a1)(ω−ω0)) >−ε.

(4.1)

The first equality gives the same curve coming out of the branch point as for ε= 0. Let us
consider the curves described by the second and third equalities. Without loss of generality,
we set a = 1 (rotation and scaling of the ω plane) and denote z = x + iy = ±√

ω−ω0,
a1 − c1 = α + iβ. Then the second and third equalities will be rewritten as

Im(z + (α + iβ)z2)= ε ⇒ y + 2αxy + β(x2 − y2)= ε. (4.2)
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z ω

ε < 0

ε > 0

Figure 10. Hyperbola in the z plane (the case β > 0 is shown; for β < 0, the picture is mirrored with respect
to the real z axis) and its mapping into the ω−ω0 plane.

We get the equation of the hyperbola

y = ε

1 + 2αx
, β = 0,

(
x + α

β
y

)2

−
⎛
⎝
√
α2 + β2

β2 y − 1
2β

√
β2

α2 + β2

⎞
⎠

2

= − 1
4(α2 + β2)

+ ε

β
, β �= 0. (4.3)

The part of the hyperbola satisfying the inequalities lies in the region y < 0. For ε= 0,
one of the branches of the hyperbola touches the straight line y = 0 at the point (0, 0);
for β > 0 this branch lies at the bottom, and for β < 0 it lies in the upper half-plane z.
Depending on the sign of ε, this branch shifts. When shifted upwards (ε/β > 0), the curve
on the plane z2 =ω−ω0 has the form of a closed loop, and when shifted downwards
(ε/β < 0), it envelops the positive real semi-axis (figure 10).

Now consider specifically configuration 4a, i.e. for ε= 0, the first inequality in (4.1) is
satisfied, but the second and third are not satisfied (in this case, β > 0). Then for ε > 0, the
first inequality cuts off the part of the curve adjacent to the branch point, and instead the
curve is continued by the segment described by the second and third expressions in (4.1).
As a result, the curve has a loop around the branch point (the latter no longer belongs to
the curve). At the point of adjoining segments of the curve, one of which is described by
the first, and the other by the second and third expressions in (4.1), we have a branching
of the curve, i.e. local configuration 3a. The resulting bifurcation of configuration 4a is
shown in figure 11(a).

Next, consider configuration 4b, i.e. for ε= 0, the second and third inequalities in (4.1)
are satisfied, but the first is not satisfied (in this case, β < 0). Then for ε > 0, the first
inequality still remains unsatisfied, and the second and third inequalities describe a curve
enveloping the branch point (which no longer belongs to the curve). For ε < 0, the first
inequality holds on the part of the curve defined by the first equality in (4.1) and adjacent
to the branch point. The second and third inequalities cut off from the corresponding
curve not a loop (as in case 4a), but branches going to infinity (see figure 10). As a result,
we obtain the dead end of the curve, near which there is a branching of the curve. The
bifurcation of configuration 4b is shown in figure 11(b).

4.3. Bifurcation of case 5
The common branch point of three roots kp,q,r (ω) with a small change in parameters
splits into two ‘regular’ branch points of pairs kp,q and kp,r . From the geometric analysis
of the k plane, when the parameters change in one direction, one of these points belongs
to the curve, and the other does not. We get the dead end of the curve. When changing the
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Figure 11. Break up of configurations (a) 4a, (b) 4b. The original configuration is shown in the centre; the left
and right plots show the curves when changing the parameters in one and the opposite direction. The dots show
the dead ends of the curve (configuration 2); the circles show the branch points of k(ω) from the same group
and, accordingly, not belonging to the curve. The arrows show the deformation of the curve when changing
parameters.

Im ω

Ω

Re ω

Im ω

Ω

Re ω

Im ω

ω0ω0ω0

Ω

Re ω

Figure 12. Bifurcation of configuration 5. The original configuration is shown in the centre; on the left and
right are the shapes of the curves when changing parameters in one and the opposite direction. The dots show
the dead ends of the curve (configuration 2); the circle shows the branch points of k(ω) from the same group,
which, accordingly, do not belong to theΩ curve. The arrows show the deformation of the curve when changing
the problem parameters.

parameters in the opposite direction, both branch points of k(ω) belong to the curve, and
‘sprouts’ emerge from each of them, which merge with the original part of the curve in the
branching point. The resulting bifurcation is shown in figure 12.

4.4. Bifurcation of case 6
Clearly, small changes in the problem parameters make the coincidence of four Im k
impossible, so that this configuration breaks up into several closely located branching
points (configuration 3a). There are many distinct curve topologies possible that connect
those branching points. Two cases illustrating unstable merging of three and six rays are
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Re ω
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Im ω
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Re ω

Ω Ω

Im ω

Re ω

Im ω
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(b)

Figure 13. Examples of possible bifurcations of configuration 6. The original configuration is shown in the
centre; on the left and right are the shapes of the curves when changing parameters in one and the opposite
direction. The arrows show the deformation of the curve when changing the problem parameters.

shown in figure 13. In the first case (figure 13a), three regular branching points exist when
changing parameters in one direction, and just one in the other direction. In the second
case (figure 13b), four regular branching points exist when changing parameters in any
direction. Recall that the configurations shown in figure 13 are just examples; other curve
topologies connecting several branching points are also possible.

4.5. Interactions of stable local topologies
From the break up of unstable topologies of the Ω curve analysed above, we obtain
possible types of interactions of stable local topologies, because at the moment of
interaction of stable topologies, an unstable one is formed. Namely, in the general case,
we have the following.

(i) Saddle-like bifurcation of two branches of the Ω curve shown in figure 9.
(ii) Interaction of branching point and dead end of the curve (k(ω) branch point belonging

to the Ω curve) is shown in figure 11(b). Intermediate unstable configuration is 4b.
(iii) Interaction of branching and two dead ends of the curve is shown in figure 12.

Intermediate configuration is fifth. The same bifurcation in the other direction of the
parameter change describes the interaction of two k(ω) branch points, in one of which
branches of different groups merge (i.e. this point is a dead end of the curve), and in
the other, branches from the same group merge (i.e. this point does not belong to the
curve).

(iv) Interaction of Ω branching point and k(ω) branch points not belonging to the
curve (since k(ω) branches from the same group merge) is shown in figure 11(a).
Intermediate configuration is 4a.

(v) Interactions of several branching points are shown in figure 13; intermediate
configuration is 6. Note that after the interaction, the number of branching points can
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Im k

Re k

Im k

Re k

(b)(a)

Figure 14. Coincidence of (a) three and (b) four imaginary parts of k(ω) roots for Reω= 0.

change, as shown in figure 13(a), where collapse of three branching points resulted in
just one branching point remaining after the interaction.

5. Topology of the Ω curve near the imaginary axis

5.1. Modifications of stable local tolopologies
We have considered all possible tolopogies of theΩ curve, except for the case when some
segment of the curve includes the imaginary ω axis. This axis is the axis of symmetry
of the complex ω plane. Indeed, if there is a travelling wave of the form ∼ ei(kx−ωt),
where k and ω are linked by the dispersion relation, then the travelling wave ∼ ei(k̂x−ω̂t)

(where k̂ = −k∗ and ω̂= −ω∗ are the numbers symmetric with respect to imaginary
axes) describes the same wave motion, since the real parts of the exponents (which have
a physical meaning) coincide. Consequently, k̂ and ω̂ must also satisfy the dispersion
relation, which implies the symmetry of the Ω curve about the imaginary axis. If part
of the curve lies on the imaginary axis, then any value k(ω) with Re k �= 0 has a paired
value k̂(ω)with Im k(ω)= Im k̂(ω), because in this case ω̂=ω. As a result of this pairing,
all considered local configurations outside the imaginary ω axis have two modifications at
the imaginary axis shown in figure 14: in the first, the imaginary parts of three k coincide
(one of which is purely imaginary, i.e. has no pair); in the other, the imaginary parts of two
symmetric pairs k coincide, in which Re k �= 0. The number of unstable curve topologies
and options for their break up into stable ones with a small change in parameters becomes
hardly countable, and their consideration in a general form does not make much sense; it
is more reasonable to do this in each specific problem separately.

Therefore, we will consider only stable local topologies and their simplest interactions.

(i) It is obvious that the regular point (1a), at which the imaginary parts of two k are
equal, remains stable; the neighbourhood of such a regular point belongs to the
imaginary ω axis (figure 15a). Its paired topology, in which the imaginary parts
of three or four k coincide, is similar to the modification of the configuration 3a
considered below.

(ii) The local configuration 1b on the imaginary axis becomes stable: the branches of the
curve emanate from the imaginary axis either at angles 0, π, ±π/2 or at angles ±π/4,
±3π/4 (figures 15(b,c), respectively).

(iii) The k(ω) branch point (configuration 2) of two k values on the purely imaginary k axis
is stable and represents the dead end of the curve (figure 16a). Its modification also
exists: two symmetric branch points with Re k �= 0, at which pairs kp,p+1 and kq,q+1,
respectively, merge. There are two options for this modification, determined by the
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Re ω
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Re ω

ω0

ω0ω 0

(a) (b) (c)

Figure 15. Topology of the Ω curve near (a) a regular point of the curve, case 1a, and (b,c) two types
of case 1b.

Im ω

Re ω

Im ω

Re ω

Im ω

Re ω

(a) (b) (c) 

ω0

ω0

ω0

Figure 16. Shapes of the Ω curve near the k(ω) branch point on the imaginary axis: (a) dead end of the
curve; (b) angle of the curve; (c) regular point on the curve.

number of boundary conditions. To analyse this in more detail, write the expansions
in the neighbourhood of the point ω0:

kp,p+1(ω)= kp(ω0)± a
√
ω−ω0 + a1(ω−ω0)+ · · · ,

kq,q+1(ω)= k̂ p(ω0)± a′√ω−ω0 + a′
1(ω−ω0)+ · · · , (5.1)

and due to the symmetry of the complex plane, a′ = ±ia∗, a′
1 = a∗

1 . Let us consider
possible options of the Im k equalities: values kp,p+1 from a pair of branching
roots, a symmetric non-branching pair kp, kq , and an asymmetric non-branching
pair kp, kq+1. There are also (without loss of generality) two types of boundary
conditions: either of the four values of k(ω) the two largest imaginary parts coincide,
Im ki = Im k j > Im km,n , or ‘intermediate’ imaginary parts coincide, Im ki > Im km =
Im kn > Im k j .
In the first option of the equality and the first type of the boundary conditions, we
have the equation of the curve (3.6) in the form

Im(a
√
ω−ω0)= 0, Im((a ± a′)

√
ω−ω0) > 0 ⇒ Im(±a′√ω−ω0) > 0, (5.2)

which is obviously impossible. With the second type of boundary conditions, we have

Im(a
√
ω−ω0)= 0, Im(a′√ω−ω0) > 0, Im(−a′√ω−ω0) < 0 (or vice versa).

(5.3)

In this case, we have a part of the curve Ω emanating from the paired branch point
(and its symmetric reflection). Such a point is a symmetrical angle point of the Ω
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Im ω

Re ω

Im k

Re k

Im k

Re k

(a) (c)(b)

Figure 17. Map of the ω plane (a) into the k plane (b,c) in the case of a paired branch point lying on the
imaginary ω axis. Divergence of branches k(ω) at (b) arbitrary angles, (c) horizontally and vertically.

curve on the imaginary axis (the curve Ω , with the exception of the branch point,
does not lie on it), as shown in figure 16(b).

Next, let the imaginary parts of a symmetric pair of non-branching roots coincide.
It follows from symmetry that this is possible only for purely imaginary ω, and that
the imaginary parts of the second pair of roots also coincide, so it is obvious that such
Ω points exist only under the first type of the boundary conditions. In this case, the
curve emanates from the point ω0 both up and down on the ω plane, i.e. this point is
not the end of the curve, but just a regular point (figure 16c).

Finally, let the imaginary parts of the asymmetric pair of non-branching roots
coincide. From the symmetry of the k plane it follows that the neighbourhood of
the imaginary axis ω is mapped into different sectors of the k plane (rotated with
respect to each other by a non-zero angle; see figure 17) , therefore in the general case,
such equality is impossible. The exception is the case a = a′ = ±|a|e±iπ/4, in which
the images of the imaginary axis on the k plane diverge horizontally from the branch
point (figure 17c). In this case, the first terms of the expansion in the curve equation
cancel (a + a′ = 0), the linear term becomes the leading one, and the equation

Im((a1 − a′
1)(ω−ω0))= 0 ⇒ Im(i(ω−ω0))= 0 (5.4)

gives only points of the imaginary axis ω. However, taking into account the next
term of the expansion k(ω), of order (

√
ω−ω0)

3, shows that in this order, the
equality of imaginary parts is generally impossible. Consideration of points close to
the imaginary axis shows that this order of expansion, as well as

√
ω−ω0, gives

twists of the sectors of the k plane in different directions, therefore the points of Ω
ensuring the equality of the imaginary parts of an asymmetrical pair of roots do not
exist.

We conclude that in addition to the dead end of the curve, with the first type of
the boundary conditions, we have a continuation of the curve both up and down along
the imaginary axis (at the k(ω) branch point there is just a change in the pair of equal
Im k), as shown in figure 16(c); with the second type of the boundary conditions,
we have a symmetrical angle of the curve (figure 16b). A simple analysis shows that
in the general case, both additional options are unstable, i.e. with a small change in
parameters, the double branch point turns into two regular branch points.

(iv) Let us move on to the last topology that is stable outside the imaginary axis, i.e.
the branching of the curve 3a. In addition to its ‘regular’ topology, its modification
exists at the imaginary axis ω. Namely, if at the point ω0 the imaginary parts of three
k branches are equal (one of them in this case is purely imaginary), then we have
the ‘regular’ branching point of the curve (figure 18a). If the imaginary parts of two
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Im ωIm ωIm ω

Re ωRe ωRe ω

(a) (b) (c)

ω0 ω0
ω0

Figure 18. Configurations of the Ω curve near (a) the ‘regular’ branching point of the curve, and its
modifications for the (b) first and (c) second types of boundary conditions.

symmetric k pairs are equal (hence Re k �= 0 necessarily), then the local topology
of the curve Ω depends on the boundary conditions. As before, write the local
expansions

ks = ks(ω0)+ a(ω−ω0), ks+1 = ks+1(ω0)+ b(ω−ω0), (5.5)

kp = k̂s(ω0)+ a∗(ω−ω0), kp+1 = k̂ p+1(ω0)+ b∗(ω−ω0). (5.6)

With the first type of the boundary conditions, Im ki = Im k j > Im km,n , two
symmetrical branches depart from the point to the right and left, and also upward
and downward branches depart along the imaginary axis ω. That is, there is a
local branching of four rays (figure 18b). With the second type of the boundary
conditions, Im ki > Im k j = Im km > Im kn we have the intersection of two straight
lines approaching the imaginary axis at an arbitrary angle; other points of the
imaginary axis do not belong to the curve (figure 18c). A simple analysis shows that
both topologies are stable with respect to small changes in the problem parameters.

We conclude that not three, but seven stable local topologies of theΩ curve are possible
on the imaginary axis: a regular point (configuration 1a), intersection of curves at angles 0,
π/2 or ±π/4 (two types of configuration 1b), the dead end of the curve (configuration 2),
and the three types of the curve branching (configuration 3a and the two modifications).
These topologies are shown in figures 15(a), 15(b), 15(c), 16(a), 18(a), 18(b), 18(c).

5.2. Possible bifurcations of the curve topology in the vicinity of the imaginary axis
Since there are seven stable local configurations on the imaginary axis ω, six of which are
non-trivial (not regular points), it is almost impossible to consider all possible interactions
(the number of which is at least 6! = 720) when changing the problem parameters.
Therefore, in this subsection, we consider just some of the simplest interactions, which
follow from consideration of break-up scenarios of unstable topologies mentioned in § 5.1.

Namely, the following interactions are possible.

(i) Collision of two configurations 1b. In this case, both the first and second derivatives
are equal, and structure 1c arises, after which the curve splits into three regular
unconnected branches. Such a bifurcation is shown in figure 19.

(ii) Collision of two dead ends of the Ω curve. Two possible bifurcations of this type are
shown in figure 20.

(iii) Collision of a dead end of the curve with a branching point of the curve. This
bifurcation is topologically equivalent to the regular case (figure 11b); after the
collision, a regular section of the curve remains, as shown in figure 21(a).
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Im ω Im ω Im ω

Re ω Re ω Re ω

Figure 19. Bifurcation of the collision of two configurations 1b.

Im ωIm ωIm ω

Im ωIm ωIm ω

Re ω Re ω Re ω

Re ω Re ω Re ω

(a)

(b)

Figure 20. Two options for collision of the Ω curve dead ends on the imaginary axis.

(iv) Collision of a dead end of the curve with a modification of the branching point where
four rays are connected. After the collision, a branching point of the curve remains
and connects three rays, while the dead end disappears, because the k(ω) branch point
corresponds to the roots from the same group and no longer belongs to the Ω curve.
This bifurcation is shown in figure 21(b).

As mentioned above, these are just some of the possible bifurcations of the Ω curve
topology near the imaginary ω axis. These bifurcations can be observed in the Ω curve
analysis of particular problems, e.g. Podoprosvetova & Vedeneev (2022).

6. Examples
The results obtained above have a rather mathematical nature. However, the resulting
topology of the asymptotic Ω curve that attracts eigenfrequencies as L → ∞ is extremely
useful in the analysis of the eigenfrequency interactions and transition to instability. Note
that the equation for Ω does not involve boundary conditions and is governed by just the
dispersion relation for the infinitely long problem. Hence the prediction on the instability
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Figure 21. Collision of a dead end with a branching point connecting (a) three or (b) four rays.

and modal interactions can be made without even solving the eigenvalue problem, which
can be time-consuming in many practical cases. Below, we consider several instructive
problems. We start with a wave equation as a trivial example, which is followed by
panel flutter in a supersonic gas flow (Dowell 1974; Vedeneev 2005; Shishaeva, Aksenov
& Vedeneev 2022), oscillations of a collapsible tube conveying non-Newtonian fluid
(Podoprosvetova & Vedeneev 2022), and the stability of rotating flow in a pipe (Wang
& Rusak 1996). In all cases, we numerically trace how the elongation of the system
yields the movement and interaction of eigenfrequencies in the complex ω plane, and
their concentration near the asymptotic curves.

6.1. Wave equation
The simplest example to demonstrate how the spectrum of the finite-length problem
transforms into its limit ‘global’ state as L → ∞ is the wave equation that is a model
of a stretched string:

∂2w

∂t2 − a2 ∂
2w

∂x2 = 0, (6.1)

where a is the speed of sound. Assuming standard boundary conditions

w(x, t)= 0, x = ± L

2
, (6.2)

the discrete set of eigenvalues is readily given by

ωn = aπn

L
, n ∈Z. (6.3)

All these are real and fill the real ω axis as L → ∞. Corresponding eigenmodes have the
form

wn(x, t)= cos
(πnx

L

)
e−iωnt , n odd, wn(x, t)= sin

(πnx

L

)
e−iωnt , n even. (6.4)
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Figure 22. Panel flutter problem: elastic plate (grey) in a supersonic gas flow.

Let us now consider the global instability approach. Considering travelling wave
solutions w= ei(kx−ωt), we derive the dispersion relation

ω2 − a2k2 = 0. (6.5)

Solving this equation, k1,2(ω)= ±ω/a, and satisfying the Ω curve (2.11), we conclude
that the curve coincides with the real ω axis.

Consequently, the eigenspectrum (6.3) of the finite-length problem is just a
discretisation of the Ω curve. Now consider the frequency selection mechanism.
Eigenmodes (6.4) can be exactly represented as a superposition of two travelling waves:

wn(x, t)= 1
2

ei(k1(ωn)x−ωnt) + 1
2

ei(k2(ωn)x−ωnt), n odd,

wn(x, t)= 1
2i

ei(k1(ωn)x−ωnt) − 1
2i

ei(k2(ωn)x−ωnt), n even. (6.6)

Since for each real frequency there exist just two waves travelling in opposite directions,
which have no spatial growth, the reflection process described in § 2.5 does not change the
wave amplitude. This ensures the perfect position of eigenfrequencies on theΩ curve. The
selection of ωn along the curve provides such a phase tuning between the two waves that
after double reflection from the boundaries, the wave phase is also unchanged. Hence in
the context of global instability theory, the standing wave modes (6.4) can be represented
as superpositions of two travelling waves that reflect from the boundaries and transform
into each other.

6.2. Panel flutter
Let us now consider a classical panel flutter problem (Dowell 1974): a two-dimensional
elastic plate, which represents a skin panel of a supersonic aircraft, is mounted into an
absolutely rigid plane and exposed to a supersonic air flow (figure 22). The problem is
considered in dimensionless form, where plate thickness, plate material density and free-
stream speed of sound are chosen as independent scales. Then the equation of the plate
motion takes the form

∂2w

∂t2 = −D
∂4w

∂x4 − p(x, t), (6.7)

where w is the vertical plate deflection, D is the bending stiffness, and p(x, t) is the air
pressure perturbation.

Calculating the unsteady pressure through the piston theory,

p(x, t)=μ
M√

M2 − 1

(
M
∂w

∂x
+ ∂w

∂t

)
, (6.8)
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Figure 23. Spectrum of the panel flutter problem (circles) at the panel length-to-thickness ratios (a) L = 300
(the panel is stable), (b) L = 600 (one fluttering mode), (c) L = 1200 and (d) L = 1600 (multiple fluttering
modes). The asymptotic Ω curve as L → ∞ is shown by a grey line.

where μ is the air-to-material density ratio, and M is Mach number, we obtain the closed
equation of motion:

D
∂4w

∂x4 + ∂2w

∂t2 +μ
M√

M2 − 1

(
M
∂w

∂x
+ ∂w

∂t

)
= 0. (6.9)

Considering travelling wave solutions of an infinite problem, w= ei(kx−ωt), we obtain the
dispersion relation (Vedeneev 2005)

D(k, ω)= Dk4 −ω2 + iμ
M√

M2 − 1
(Mk −ω)= 0. (6.10)

For the finite-length problem, we consider panels simply supported at both edges x =
±L/2 (where L is the panel length related to its thickness), i.e.

w= ∂2w

∂x2 = 0, x = ± L

2
. (6.11)

For the numerical solution of the eigenvalue problem (6.9), (6.11), we use the method
described by Shitov & Vedeneev (2016), which is not discussed here for the sake of brevity.
In what follows, dimensionless stiffness and flow density are set to D = 23.9 and μ=
0.00012, which correspond to an aluminium panel at 11 km above sea level.

Figure 23 and supplementary movie 1 (available at https://doi.org/10.1017/
jfm.2025.203) show the numerically calculated eigenspectrum of a panel in a supersonic
flow with Mach number M = 1.5 for different dimensionless lengths L . When the panel
length L is small, all eigenfrequencies are damped; the increase in L results in a decrease
of their real parts, i.e. of oscillation frequencies. At certain L , two smallest frequencies
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L

R(z, t)
z

Figure 24. Instability problem of a tube conveying fluid.

collide, and after collision, one moves down, and the other moves up into the upper
half-plane, resulting in coupled-mode panel flutter. For larger L , the following pairs of
eigenfrequencies collide. The asymptotic Ω curve consists of three segments: one is
located in the bottom half-plane and is infinite to the right; it is connected with two
close-to-vertical segments at the branching point ω≈ 0.0014 − 0.00008i ; each of the latter
segments ends at dead ends that are k(ω) branch point (figure 23). It is seen that the
elongation of the panel results in attraction of the numerically calculated eigenfrequencies
to the Ω curve. Hence one can indeed predict the location of eigenfrequencies for large L
by studying the shape of the Ω curve without solving the eigenvalue problem. Note that
the coalescence of eigenfrequencies that yields the coupled-mode flutter occurs near the
branching point of the asymptotic Ω curve.

The asymptotic Ω curve for the panel flutter case is quite simple: it has just one
branching point and two dead ends of the curve (one of which, lying in the upper ω
half-plane, is responsible for the instability). The next case represents a much more
sophisticated topology of the Ω curve.

6.3. Instability of a tube conveying non-Newtonian fluid
As the next example, we consider axisymmetric perturbations of a finite-length elastic
tube attached to two rigid tubes and conveying power-law fluid (figure 24). Taking the fluid
density, steady tube radius and steady flow rate as independent scales, the non-dimensional
linearised system of equations for axisymmetric perturbations under assumptions of
Podoprosvetova & Vedeneev (2022) has the form

∂Q

∂z
+ 2π

∂R

∂t
= 0,

∂Q

∂t
+ 2(3n + 1)
(2n + 1)π

∂Q

∂z
+ 16n

π Re
Q(z, t)+ 16(1 − 3n)

π Re
R(z, t)− 2(3n + 1)

(2n + 1)π
∂R(z, t)

∂z

+ π
∂P

∂z
= 0,

P = β R(z, t)+ m
∂2 R(z, t)

∂t2 − N
∂2 R(z, t)

∂z2 , (6.12)

where Q(z, t) and P(z, t) are the flow rate and pressure perturbations in a given cross-
section, and R(z, t) is the tube radius perturbation; parameters N , m, β are dimensionless
axial tension, linear mass density and radial stiffness of the tube; Re and n are the
Reynolds number of the flow and the power-law index of the fluid rheological law. For
travelling waves in an infinite-length tube, this system yields the following dispersion
relation ((5.1) of Podoprosvetova & Vedeneev 2022):

D(k, ω)= − Nk4

2
+
(

mω2

2
+ 3n + 1

π2(2n + 1)
− β

2

)
k2

+
(

8(1 − 3n)

π2 Re
i − 2(3n + 1)

π(2n + 1)
ω

)
k +ω2 + 16n

π Re
iω= 0. (6.13)
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Axisymmetric perturbations in an infinite-length tube become unstable for the power-law
index n < 0.611 and sufficiently small stiffness β.

For the finite-length problem, neglecting rigid tube segments, and specifying fixed
tube radius and pressure at both upstream and downstream ends of the elastic segment
z = ±L/2, we obtain the following boundary conditions for perturbations:

∂Q(−L/2)
∂z

= ∂Q(L/2)
∂z

= 0, P(−L/2)= P(L/2)= 0. (6.14)

The numerically calculated spectrum of the tube conveying fluid, i.e. of the system
(6.12), (6.14), is shown in figure 25 and supplementary movie 2 for the parameters β = 0.1,
N = 1.5, m = 0, n = 0.5, Re = 100, and several tube lengths. It is seen that the elongation
of the tube yields more dense distribution of the eigenfrequencies and their attraction to
the Ω curve. Sufficiently short tubes are stable; all the eigenmodes are damped and have
large oscillation frequencies. Increase in L yields the decrease of the lowest frequency
down to zero, collision with its paired frequency (which is symmetrical with respect
to the imaginary ω axis) at L ≈ 9.7, and transition to instability at L ≈ 9.9. For larger
L , next pairs of frequencies collide at the imaginary axis, and the eigenfrequencies
follow a certain pattern consisting of four collisions, shown in figure 26. After passing
each pattern, a couple of eigenfrequencies are moved from the bottom attractor region,
which is unbounded to the left and to the right, to the upper attractor region. Namely, in
figure 26, comparison of eigenfrequencies for L = 54.4 and 75.0 shows that the qualitative
eigenfrequency loci are similar, but for L = 75.0 there are three pairs of frequencies in the
upper segment, while for L = 54.4 there are two pairs. Increase in L results in saturation
of the upper attractor region through similar patterns of the frequency collisions. The
subsequent increase of the tube length yields the formation of a clear asymptotic structure
of the eigenfrequency loci, as shown in figure 25. This structure has a quite sophisticated
topology that includes two closed loops and three branching points at the imaginary ω
axis, as well as two unbounded segments. It is clearly seen that the eigenfrequency loci
tend to the Ω curve, although without knowing the curve topology, such distribution of
eigenfrequencies would seem paradoxical. As the Ω curve lies entirely in the bottom ω

half-plane, very long tubes again become stable.
From this example, we conclude that the analysis of theΩ curve topology yields a deep

understanding of the eigenfrequency distribution in the ω plane, even though it is very
unusual at first sight. As in the panel flutter example, we also observe eigenfrequency
coalescence near branching points of the Ω curve. This feature helps to explain the nature
of the frequency coalescence, which can yield the coupled-mode instability in various
systems involving fluid–structure interactions.

6.4. Instability of rotating pipe flow
As a last example, let us analyse the flow of inviscid fluid in a pipe, following the study of
Wang & Rusak (1996). The fluid performs columnar axial motion and simultaneous solid
body rotation (figure 27). Considering the dimensionless problem with the axial velocity
and radius taken as independent scales, the base velocity in the cylindrical coordinate
system (r, θ, z) takes the form

ur = 0, uθ =
√
Ω

2
r, uz = 1, (6.15)
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Figure 25. Spectra of the tube conveying power-law fluid (circles) for L = 50, 100, 200, 500. The asymptotic
Ω curve as L → ∞ is shown by a grey line.
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Figure 26. Pattern of the eigenfrequency collisions with the increase of L that results in transferring of a pair
of frequencies from the bottom attractor region to the upper attractor region. Arrows show the frequency loci
for increasing L .
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Figure 27. Rotating fluid flow in a pipe.
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where
√
Ω is a swirl parameter. The equation of motion for small perturbations has the

form (Wang & Rusak 1996)(
ψyy + ψzz

2y
+ ψ

2y

)
zz

+ 2
(
ψyy + ψzz

2y

)
zt

+
(
ψyy + ψzz

2y

)
t t

= 0, (6.16)

where ψ(z, y, t) is a stream function perturbation, y = r2/2, and subscripts denote
differentiation. Considering axisymmetric perturbations, the function ψ must satisfy
kinematic boundary conditions at the pipe axis and the wall,ψ(z, 0, t)=ψ(z, 1/2, t)= 0.
Separation of variables ψ(z, y, t)= ϕ(z) Φ(y) e−iωt yields the equation for ϕ(z):

ϕ′′′′ − 2iωϕ′′′ + (Ω −ΩB −ω2)ϕ′′ + 2iωΩBϕ
′ −ω2ΩBϕ = 0, (6.17)

where a prime stands for the z-derivative, and ΩB = 14.682 is a critical swirl parameter.
The corresponding dispersion relation in the notation of the present paper is

(k2 +ΩB)(k −ω)2 −Ωk2 = 0. (6.18)

Note that wavenumber and frequency parameters used by Wang & Rusak (1996) are related
to the present paper’s parameters as σ = −iω and α = ik.

A simple analysis of the dispersion relation (6.18) shows that as Imω→ +∞, three
roots k(ω) have positive, and one negative, imaginary parts. Consequently, the flow admits
three right-travelling waves and one left-travelling wave. According to § 2.1, for the finite-
length flow, we must set three boundary conditions at the inlet pipe cross-section, and one
condition at the outlet cross-section. A particular form of these conditions was suggested
by Wang & Rusak (1996):

ϕ = ϕ′′ = (ΩB −Ω)ϕ′ − ϕ′′′ = 0, z = − L

2
, ϕ′ = 0, z = L

2
. (6.19)

The calculated spectrum of the boundary value problem (6.17), (6.19) is shown in
figure 28 and supplementary movie 3 for the swirl parameter Ω = 15.182>ΩB . For
very short pipes, L < 2.2, there is just one damped eigenmode lying on the imaginary
ω axis. Increase in L yields its motion up along the imaginary axis, and at L ≈ 2.2, it
moves into the upper half-plane; the flow becomes unstable (figure 28a). This mode was
previously analysed by Wang & Rusak (1996); the instability takes place for Ω >Ω1 =
ΩB + π2/4L2.

More interesting phenomena occur when the pipe length is increased further. In contrast
to previously considered problems, where the spectrum is countable, the rotating flow
problem has a finite number of eigenmodes for any L . However, the number of modes
increases when the length L is increased: at certain values of L , new modes appear from
infinity at the negative imaginary ray and move up along the imaginary axis. Such unusual
behaviour is due to specific properties of the dispersion relation (6.18) at large |ω|: the
function Im k3(ω)− Im k4(ω)∼ c2 + c2/ω

2 as ω→ ∞ so that the expansion (2.12) is
losing power at large |ω|. The second mode penetrates into the upper ω half-plane at
L ≈ 6.7, and almost immediately collides with the first mode, yielding two oscillatory
unstable modes (figure 28b). The next pair of non-oscillatory eigenfrequencies penetrates
into the upper half-plane at L ≈ 11.1 (figure 28c) and L ≈ 15.5; they collide and become
oscillatory at L ≈ 15.6. Further increase in L yields the appearance of more and more
eigenfrequencies that follow the same pattern. As can be seen in figure 28(d), their limit
locations tend to theΩ curve, which has three segments: one is infinitely long and occupies
the negative imaginary ray, and two more segments are finite and connect the branching
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Figure 28. Spectrum of the rotating pipe flow for (a) L = 5 (one non-oscillatory instability mode of Wang &
Rusak 1996), (b) L = 8 (two oscillatory instability modes), (c) L = 13 (three instability modes), and (d) L = 40
(nine instability modes). The asymptotic Ω curve as L → ∞ is shown by a grey line.

point ω= 0 with dead ends

ω= ±√ΩB

((
Ω

ΩB

)1/3

− 1

)3/2

≈ ±0.00456. (6.20)

The configuration of the Ω curve explains the seeming contradiction: the infinite
problem is neutrally stable, while the finite-length problem is unstable for arbitrarily large
L (Wang & Rusak 1996). At first sight, this breaks the principal global instability property
(§ 2.4): if the finite-length system is globally unstable, then the infinite-length system
is also unstable. However, in the rotating flow problem, the system is neutrally globally
stable: the Ω curve has a segment of real frequencies, but does not have points with
Imω> 0. The instability that takes place is a purely finite-length phenomenon attributed
to the specific boundary conditions. As dictated by the Ω curve, the growth rates have
Imωn → 0 as L → ∞, but the global instability theory a priori provides no information
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on the side of the curve to which the eigenfrequencies are attracted, i.e. on the sign of
Imωn . For the set of boundary conditions (6.19), Imωn → +0, but it is generally possible
that another set of conditions yields Imωn → −0, thus ensuring the finite-length flow
stability. It is, of course, important which boundary conditions represent the real physical
flow, and we believe that those suggested by Wang & Rusak (1996) are reasonable so that
such flow is actually unstable for any L .

7. Conclusions
We have studied possible configurations of the asymptotic curve Ω that attracts
eigenfrequencies of a long but finite system as length L → ∞. The set of stable
configurations consists of a regular point, a dead end of the curve, and a connection of
three curves. Note that at the dead end of the curve, k(ω) has a branch point, and the
reverse function ω(k) has a saddle point, which is associated with absolute instability of
an infinitely long system. Bifurcations of the curve topology when changing the problem
parameters are analysed. The case of the imaginary axis is special: is has seven stable
configurations of the curve, and a huge number of possible topology bifurcations.

The examples of theΩ curve topology provided in this study deal with supersonic panel
flutter (Vedeneev 2005, 2016; Vedeneev et al. 2010), a pipe conveying non-Newtonian fluid
(Podoprosvetova & Vedeneev 2022), and rotating pipe flow (Wang & Rusak 1996), where
several bifurcations of the topology are observed when changing the problem parameters.
However, the applications of the asymptotic analysis are not limited to these problems;
the global instability analysis has been used successfully in a wide variety of processes,
such as Poiseuille flow in a pipe of finite length, thermocapillary convection, jet flows,
elastic plates in an incompressible fluid flow, spiral waves, flame stability, Couette flow of
magnetic fluid, bending vibrations of pipes conveying fluid, flow over cavities, and plasma
instability; see Doaré & de Langre (2006) and Vedeneev (2016) for details.

The principal limitation of the global instability analysis is that it is valid for sufficiently
long domains, but the actual range of suitable lengths is a priori not known. In the panel
flutter problem, real skin panels of supersonic aircrafts perfectly follow the predictions of
the global instability theory at their real lengths (∼ 300 thicknesses). However, the fluid-
conveying elastic tube closely follows theΩ curve only at really large length (∼ 500 radii);
in this globally stable case, the finite-length tube stays unstable up to lengths ∼ 200 radii,
and stabilises only at larger lengths. The rotating pipe flow demonstrates probably the most
unexpected case: the flow is globally neutrally stable, but calculated growth rates tend to
zero as L → ∞ staying positive, i.e. the flow stays unstable for arbitrarily large L . This is
an exceptional case of neutral global stability, when the actual stability or instability of a
finite-length problem depends on particular boundary conditions and cannot be predicted
without consideration of the full eigenvalue problem.

The advantage of the global instability analysis is that the Ω curve for a particular
physical system can be obtained in a closed form without solving the eigenvalue problem.
Moreover, even if the physically reasonable lengths of the system are not large enough to
closely follow the global instability theory predictions, the pattern of the eigenfrequency
loci in the complex plane is very well predicted by theΩ curve even for very short lengths,
as demonstrated by all examples considered in this paper. This feature can be used for the
control of instability by preventing the formation of unstable modes in advance. Given
that the analysis of the Ω curve yields the effective understanding of eigenfrequency
interactions and the nature of possible instabilities, it is an effective and powerful tool
for the analysis of a variety of physical problems.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.203.
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