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ABSTRACT: We investigate the stability of an infinite elastic plate in a supersonic gas flow. This problem has been studied in
many papers regarding panel flutter problem, where uniform flow is usually considered. In this paper, we take the boundary layer
on the plate into account and investigate its influence on plate stability. Unsteady pressure is derived from Rayleigh equation, which
governs inviscid disturbances of the boundary layer. If the wave length is not too large, Rayleigh equation is solved analytically;
otherwise it is studied numerically. In both cases dispersion relation for a plate in supersonic flow with boundary layer is derived,
and the influence of the boundary layer on the plate stability is analysed.
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1 INTRODUCTION

The classical stability theory of shear flows deals with fluid
flows over rigid surfaces. Many different ways of laminar-
turbulent transition control have been studied, such as cooling
or heating of the surface, boundary layer suction or blowing,
surface porosity, etc.

Following [1], a series of papers is devoted to the investiga-
tion of boundary layer stability over compliant surfaces [2–9].
It has been shown that elastic and viscous properties of the sur-
face can significantly change the shape of the neutral stability
curve and can change instability character from convective to
absolute. Also, in addition to inviscid inflection-point instabil-
ity and viscous Tollmien-Schlichting instability, a series of new
instability types appears due to flexibility of the surface [2, 3].

The stability of compressible shear flows, and especially of
supersonic flows over a compliant wall, is studied much less.
In supersonic flows over a compliant wall, one more instabil-
ity type appears, namely, panel flutter [10, 11]. It is dangerous
not because of flow transition to turbulence, but primarily be-
cause of high-amplitude vibrations of the wall structure. This
phenomenon is well known in aviation and has been studied in
numerous papers since the 1950s.

Up to recent years, only one panel flutter type, namely,
coupled-mode flutter, was studied. It occurs due to the cou-
pling of two plate eigenmodes through gas flow. In case of
low supersonic flow speeds, another flutter type exists, namely,
single-mode flutter. Even though this type of flutter was dis-
covered in the 1960s [11], it is still viewed by some as being
non-physical and only appearing in calculations due to insuffi-
cient accuracy in numerical studies. However, recently, it was
analytically proved [12] that this type of flutter indeed exists;
later, it was observed in experiments [13] and studied numeri-
cally [14, 15].

The overwhelming majority of panel flutter investigators did

not take the boundary layer into account and consider uni-
form velocity and temperature profile. In a few papers where
the influence of the boundary layer was numerically studied
[16–18], a particular velocity profile was considered, namely,
(1/7)th power velocity law. The reason is that those studies
were devoted to the modelling of experiments [19, 20]. The
same boundary layer profile was studied in [21]. Those stud-
ies showed that the boundary layer of this particular profile can
decrease the growth rate of unstable eigenmodes or even fully
suppress instability. However, in flows over flight vehicles at
different flight conditions and for different skin panel locations,
boundary layer profiles over panels can significantly differ. In
this paper, we study the influence of the arbitrary boundary
layer profile on panel flutter.

2 FORMULATION OF THE PROBLEM

We investigate the stability of an infinite elastic plate stretched
by an isotropic in-plane force. One side of the plate is exposed
to shear gas flow; the other side experiences constant pressure
equal to an undisturbed pressure of the flow so that the undis-
turbed state of the plate is flat (Figure 1). The flow has a bound-
ary layer over the plate surface with given velocity and temper-
ature profiles u0(z) and T0(z), respectively. It is assumed that
they are governed by the flow conditions over the flight vehicle,
whose single panel is represented by the plate considered.

The problem is investigated in 2-D formulation; also, we ne-
glect the growth of the boundary layer so that the unperturbed
flow does not depend on x. This admits the perturbations of
a travelling-wave type, where all variables are proportional to
ei(kx−ωt). All variables are assumed to be non-dimensional,
with the speed of sound and temperature of the flow outside the
boundary layer taken as the velocity and temperature scales, the
plate thickness as the length scale, and plate material density as
the density scale.
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Figure 1: Gas flow over elastic plate.

The plate is governed by Kirchhoff-Love small deflection
plate theory. In a dimensionless form, the plate equation is as
follows:

D
∂4w

∂x4
−M2

w

∂2w

∂x2
+
∂2w

∂t2
+ p(x, 0, t) = 0, (1)

where w(x, t) is the plate deflection, D is the dimensionless
plate stiffness, Mw is the square root of the dimensionless in-
plane tension force, and p(x, z, t) is the flow pressure distur-
bance generated by the plate, which hence is a function of w.

The flow is assumed to be laminar; the Reynolds number
Re → ∞. This means that small perturbations of the flow are
governed by the inviscid Rayleigh equation, while viscosity is
essential only in the formation of the steady boundary layer as
non-uniform distribution of velocity and temperature.

Let us now proceed to equations. Let v(z)ei(kx−ωt) and
p(z)ei(kx−ωt) be the perturbations of vertical velocity com-
ponent and pressure. Then the compressible Rayleigh equa-
tion [22] takes the following form:

d

dz

(
(u0 − c)dv/dz − vdu0/dz

T0 − (u0 − c)2

)
− 1
T0
k2(u0−c)v = 0. (2)

Amplitude of pressure perturbation is expressed through v(z)
as follows:

p(z) =
µ

ik

(u0 − c)dv/dz − vdu0/dz

T0 − (u0 − c)2
, (3)

where µ is the dimensionless density of the flow outside the
boundary layer.

Consider boundary conditions for the Rayleigh equation.
First, at the plate surface z = 0, we assign the condition of
impenetrability along the plate bent in the shape of a travelling
wave: w(x) = ei(kx−ωt). The second boundary condition is the
radiation condition as z → +∞. We apply it at the outer bound-
ary of the boundary layer z = δ, where δ is the dimensionless
boundary layer thickness, as follows. Assume that for z > δ,
the flow is uniform, u0 ≡M∞ is the Mach number outside the
boundary layer, and T0 ≡ 1. Then for z > δ, Rayleigh equation
(2) is reduced to an equation with constant coefficients, whose
solution is v(z) = Ceγz , γ = −

√
k2 − (M∞k − ω)2. The

radiation condition as z → +∞ yields a particular square root
branch, namely,

Re γ < 0 (4)

for Imω � 1. This exponential solution outside the boundary
layer must be matched with the solution inside the boundary
layer. Thus, the boundary conditions finally take the following
form:

v = −iω (z = 0),
1
v

dv

dz
= γ (z = δ). (5)

Hereafter, we assume that the parameter µ (which is the den-
sity of the flow outside the boundary layer rated to the plate

material density) is small, and use asymptotic expansions as
µ → 0 wherever it is possible. In industrial applications, the
order of µ is typically in the range 10−5 . . . 10−3.

3 DISPERSION RELATION FOR AN INFINITE PLATE IN
A GAS FLOW

We assume that the plate is infinite and consider travelling-wave
disturbances: w(x, t) = ei(kx−ωt). In this section we derive the
dispersion relation that connects wave number k and frequency
ω in the following manner. First, we solve Rayleigh equation
(2) with boundary conditions (5). Second, we calculate distur-
bance of pressure (3) acting on the plate surface. Finally, we
substitute the pressure disturbance into the plate equation (1)
and obtain the dispersion relation.

Note that the Rayleigh equation can have two singularities
[22]. The first one is the critical point zc, where u0(zc) = c. It
leads to the singularity of the solution that will be discussed be-
low. The other one is the point where T0(z)−(u0(z)−c)2 = 0,
which means that the phase speed of the wave is equal to the lo-
cal speed of sound. This singularity is removable.

3.1 Long waves

The Rayleigh equation is solved by using two methods, analyt-
ical for long waves and numerical for short waves. First, con-
sider the case of long waves. The solution can be constructed in
the form of a convergent series in k2, known as the Heisenberg
expansion [22, 23]. In industrial applications related to flutter,
wavelengths λ = 2π/k of practical interest are usually much
larger than the boundary layer thickness δ. Therefore, we can
assume that |k| is small, namely, |k| � 1/δ, and keep only
the first term of the series. This is equivalent to neglecting the
second term of order of k2 in (2):

d

dz

(
(u0 − c)dv/dz − vdu0/dz

T0 − (u0 − c)2

)
= 0.

This equation is easily solved, and its general solution is

v(z) =
(
c1

(∫ z

0

T0(ζ)dζ
(u0(ζ)− c)2

− z
)

+ c2

)
(u0(z)−c). (6)

Substitution into (3) yields the pressure perturbation

p(z) ≡ c1µ

ik
. (7)

It is clearly seen that (6) has a singularity in the critical point
that is not removable in inviscid theory. Solutions that are
limits of the viscous system solutions (analogous to the Orr-
Sommerfeld equation in incompressible fluid) as viscosity van-
ishes are constructed such that the integration path is located in
the compex z plane and passes below the critical point [22]. In
particular, if Im c > 0 (growing disturbances), then integration
can be accomplished along the real z axis. If Im c 6 0 (neutral
and damped disturbances), integration must be accomplished in
the complex z below the singularity.
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Substituting (6) into boundary conditions (5), finding c1 and
c2, and calculating (7) yield pressure disturbance on the plate
surface

p(0) = −µ

( (M∞k − ω)2√
k2 − (M∞k − ω)2

)−1

+

(∫ δ

0

T0(ζ)dζ
(u0(ζ)− c)2

− δ

))−1

.

The first term in parentheses represents the contribution of the
uniform flow outside the boundary layer, whereas the second
term represents the contribution of the boundary layer.

It is convenient to extract boundary layer thickness δ from the
integral. Substituting ζ = δη, we obtain the following:∫ δ

0

T0(ζ)dζ
(u0(ζ)− c)2

= δ

∫ 1

0

T0(η)dη
(u0(η)− c)2

.

Hereafter, we will consider functions u0(η) and T0(η) as de-
scribing the boundary layer profile, where η is the local bound-
ary layer vertical coordinate, 0 ≤ η ≤ 1.

3.2 Short waves

For the case of short wave length comparable with the bound-
ary layer thickness, the Rayleigh equation is solved numerically
through the Runge-Kutta method. Having velocity and temper-
ature boundary layer profiles, u0(z) and T0(z), respectively, we
first find the critical point zc and choose a smooth path pass-
ing below the critical point in the complex z-plane (figure 2).
The next step is the numerical solution of the Rayleigh equation
along that path, by using the shooting method and the Runge-
Kutta method. Finally, by using formula (3), we calculate un-
steady pressure p(0) on the plate surface.

Re z

Im z

z
c

Figure 2: Integration path chosen for solving the Rayleigh
equation for the velocity profile u0(η) = M∞sin(πη/2),
M∞ = 1.6, c = 0.5 − 0.33i. The critical point is zc ≈
0.20− 0.14i.

3.3 Dispersion relation

The substitution of plate deflection w(x, t) = ei(kx−ωt) and
pressure disturbance p = p(0)ei(kx−ωt) into the plate equation
(1) yields the dispersion relation. In case of long waves it takes
the form

D(k, ω) = (Dk4 +M2
wk

2 − ω2)−

− µ

( (M∞k − ω)2√
k2 − (M∞k − ω)2

)−1

+

δ

(∫ 1

0

T0(η)dη
(u0(η)− c)2

− 1
))−1

= 0. (8)

Note that its structure reflects the contribution of each of three
media: the plate, the boundary layer, and the uniform flow out-
side the boundary layer. In particular, the expression in the first
parentheses represents the plate: its three terms reflect the bend-
ing stiffness, tension, and inertia of the plate. The expression in
the second parentheses represents the flow, whose influence is
proportional to µ. The first term in the parentheses is the con-
tribution of the uniform flow, whereas the second represents the
boundary layer.

As δ → 0, the dispersion relation (8) coincides with the dis-
persion relation for a plate in uniform flow [12, 24]:

(Dk4 +M2
wk

2 − ω2)− µ (M∞k − ω)2√
k2 − (M∞k − ω)2

= 0.

In the case of short waves, when unsteady pressure on the
plate surface is calculated numerically, the dispersion relation
can be written in the form

D(k, ω) = Dk4 +M2
wk

2 − ω2 + p(0) = 0, (9)

where p(0) is found by integrating the Rayleigh equation and
applying (3).

4 INSTABILITY OF TRAVELLING WAVES OF MODER-
ATE WAVE LENGTHS

Hereunder we consider wavelengths that are not too long so that
solutions ω(k) of the dispersion relation for the plate in the flow
are close to those for the plate in vacuum. In particular, we as-
sume that |k| � µ1/3. The influence of the flow on such waves
is small and can be taken into account in the first approximation
in µ. Investigation of long waves was conducted in [25].

In this section we consider ”moderate” wave lengths, when,
on one hand, the wave is not too long, and, on the other hand,
not too short so that the Rayleigh equation can be solved analyt-
ically as shown in Section 3.1 (i.e., µ1/3 � |k| � 1/δ). Under
this assumption, the Taylor expansion in µ yields the following:

ω(k, µ) = ω(k, 0)− µ∂D
∂µ

/
∂D
∂ω

∣∣∣∣
µ=0

+ o(µ).
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Neglecting infinitesimal terms, we obtain

ω(k, µ) = ω(k, 0)−

− µ

2ω(k, 0)

( (M∞k − ω)2√
k2 − (M∞k − ω)2

)−1

+

δ

(∫ 1

0

T0(η)dη
(u0(η)− c)2

− 1
))−1

, (10)

where the expression in parentheses is calculated at µ = 0.
It is seen that the frequency ω(k, µ) of the plate in the flow

can be represented as the frequency of the plate in vacuum
ω(k, 0), slightly (by the order of µ) modified by the flow. As
the frequency in vacuum ω(k, 0) is always real, the stability of
the plate in the flow is governed by this small term caused by
the flow. The flow influence on the frequency, as well as on
the dispersion relation, is clearly split into two different mecha-
nisms expressed by two terms in the parentheses: uniform flow
(the first term) and the boundary layer (the second term).

In order to investigate the influence of the boundary layer on
the growth of travelling waves, let us first consider waves in uni-
form flow, δ = 0 [12]. In this case, the behaviour of the wave
is governed by the square root in the right-hand side of (10).
The choice of an appropriate branch is not obvious and must
be conducted by considering radiation condition (4) for rapidly
growing waves. In other words, the square root branch must be
an analytical continuation of the branch defined as follows:

Re
√
k2 − (M∞k − ω)2 > 0, Imω → +∞,

from the region of very large Imω to the values of interest.
We will be primarily interested in unstable solutions, that is,
Imω > 0; therefore, the path for continuation in ω plane can
be chosen so that it lies in the upper half plane, and this con-
tinuation is single-valued (note that both branch points of the
square root are real for k ∈ R).

The accurate treatment of the continuation [12] yields four
cases. If the wave propagates upstream (i.e. c < 0), it is always
damped. If the wave propagates downstream, it is amplified if
0 < c < M∞ − 1, neutral if M∞ − 1 < c < M∞ + 1, and
damped if c > M∞ + 1. Physically, these inequalities express
a relationship between the phase speed c of the wave running
in the plate and the speed of acoustic waves M∞ ± 1 in the gas
flow.

Thus, three types of wave behaviour are possible:

• In the uniform flow, the wave is growing and supersonic
relating to the flow: 0 < c < M∞ − 1.

• In the uniform flow, the wave is neutral and subsonic re-
lating to the flow: M∞ − 1 < c < M∞ + 1.

• In the uniform flow, the wave is damped and supersonic
relating to the flow: c > M∞ + 1 or c < 0.

Let us treat them in series in order to investigate the influence
of the boundary layer term in (10).

4.1 Influence of the boundary layer on the growing wave

First, we will investigate waves of the first type. To make the
analysis clearer, denote

A =

√
k2 − (M∞k − ω)2

(M∞k − ω)2
=

√
1− (M∞ − c)2

k(M∞ − c)2
,

B = δ

(∫ 1

0

T0(η)dη
(u0(η)− c)2

− 1
)
,

and rewrite (10):

Imω(k, µ) = − µ

2ω(k, 0)
Im(A+B)−1.

As the wave is growing at δ = 0, then ImA = a > 0,
ReA = 0. Let us determine which regions of B plane corre-
spond to a decrease or increase of Im(A+B)−1 in comparison
with ImA−1 (i.e. stabilisation or destabilisation of the wave by
the boundary layer).

It is easy to prove that the level lines of Im(A+B)−1 on the
complex B plane are circles with centres on the imaginary axis
that pass through the point B = −ia. If the second intersec-
tion of the circle and imaginary axis lies above this point, then
Im(A + B)−1 < 0; otherwise, Im(A + B)−1 > 0. Level line
Im(A + B)−1 = ImA−1 is a circle that passes through the
point B = 0. Level line Im(A + B)−1 = 0 (neutral distur-
bances) is a horizontal line passing through the point B = −ia
(figure 3).

Fix the phase speed c and consider Im(A + B)−1 as a func-
tion of the boundary layer thickness δ, assuming that profiles
u0(η) and T0(η) are specified. A does not depend on δ, while
B is a linear function of δ. Then values of B on the complex
plane that correspond to different values of δ lie on a ray that
begins at B = 0.

Two cases are possible. If ImB > 0, then the ray is directed
upward or horizontally. In this case, for any δ, the wave is
growing; its growth rate is less than at δ = 0 and tends to zero
as δ →∞.

Re B

Im B

ia

Im B=-a
δ

2

δ
1

1

3

2

4

Figure 3: Level lines Im(A + B)−1. 1: Im(A + B)−1 = 0;
2: set of lines below 1, Im(A + B)−1 > 0; 3: set of lines
above 1, ImA−1 < Im(A + B)−1 < 0; 4 (shaded): region
Im(A+B)−1 < ImA−1 < 0.
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In the other case, ImB < 0, the ray is directed downward.
For 0 < δ < δ1, the growth rate is positive and larger than at
δ = 0, where δ1 is the value where the ray crosses the circle
Im(A + B)−1 = ImA−1 (figure 3). For δ1 < δ < δ2, the
growth rate is still positive, but less than at δ = 0, where δ2 is
the value at which the ray crosses the line Im(A + B)−1 = 0.
Finally, for δ > δ2, the wave is damped.

The value of ImB is calculated explicitly as follows. Inte-
grand in the definition ofB has a singularity at the critical point
η = ηc, which must be passed below, according to Lin’s rule.
Let us expand boundary layer profiles in the Taylor series near
η = ηc:

T0(ξ) = T00+T01ξ+. . . , u0(ξ) = c+u01ξ+u02ξ
2/2+. . . ,

where ξ = η− ηc, T0n and u0n are n-th derivatives in the criti-
cal point. Then we have the following:

T0(ξ)
(u0(ξ)− c)2

=
T00 + T01ξ + . . .

(u01ξ + u02ξ2/2 + . . . )2
=

T00

u2
01

1
ξ2

+
1
u2

01

(
T01 − T00

u02

u01

)
1
ξ

+ reg.terms (11)

As the 1/ξ term is the only source of non-zero imaginary part
of B, we obtain

ImB =
πδ

u2
01

(
T01 − T00

u02

u01

)
= −πδ T

2
0

u′30

(
u′0
T0

)′
,

where the prime denotes the derivative with respect to z at the
critical point.

Thus, ImB is a function of the boundary layer thickness and
the local behaviour of the velocity and temperature profiles in a
neighbourhood of the critical point. On the contrary, the value
of ReB depends on all regular terms in the expansion (11), i.e.
on the profiles in the full segment η ∈ [0; 1].

Let us now reformulate results obtained in terms of the
boundary layer profile. If the profile is generalised convex, i.e.
(u′0/T0)′ < 0 everywhere, then for any phase speed ImB > 0.
This means that the boundary layer has a stabilising effect: al-
though the growth rate in the flow with the boundary layer stays
positive, it is less than in the uniform flow.

If the profile has a generalised inflection point, then there ex-
ists a range of phase speeds c such that the effect of the bound-
ary layer is destabilising (i.e. growth rate of the wave in the flow
with the boundary layer is higher than in the uniform flow) for
δ < δ1, since ImB < 0. The closer |ReB| is to zero (that
is, direction of the ray to vertical), the more growth rate we ob-
tain due to the boundary layer. In the limit case ReB = 0,
ImB → −a the value of Im(A+B)−1 (and hence the growth
rate Imω) tends to infinity as δ → δ1.

The possibility of large growth rates caused by the boundary
layer in real flows will be considered below. But the limit case
of c → 0 can be immediately excluded, as the behaviour of
ReB can be explicitly found. After the integration of (11), the
leading term of ReB is as follows:∫ 1−ηc

−ηc

T00

u2
01

1
ξ2
dξ = −T00(ηc)

u2
01(ηc)

(
1

1− ηc
+

1
ηc

)
.

Thus, as c → 0 (consequently, ηc → 0), ReB → −∞, i.e.
the ray direction tends to horizontal. This means that, first,
δ1 → 0 and, second, the increase of the growth rate caused by
the boundary layer for 0 < δ < δ1 is negligible. We conclude
that destabilisation of the wave growing in uniform flow by the
boundary layer can occur only for intermediate phase speeds,
0 < c < M∞ − 1.

4.2 Example: Profiles of accelerating and decelerating flows

Consider self-similar boundary layer profiles [26] that are gov-
erned by parameter β. If β > 0, then the free-stream flow is
accelerating; if β < 0, then it is decelerating; if β = 0, then the
flow velocity is constant. These profiles are analogous to those
boundary layer profiles that appear in incompressible fluid in
case of degree function flow u∞(x) = Cxm, β = 2m/(m+1).
We will assume that the wave length is much less than the char-
acteristic distance, over which the flow outside the boundary
layer essentially changes; hence, the flow can be considered as
locally uniform. In other words, saying ‘accelerating’ and ‘de-
celerating’ flow hereunder, we mean the corresponding bound-
ary layer profile, still considering the free-stream flow uniform.

In this section, we consider an example of the Prandtl number
Pr = 1 and the heat-insulated plate so that the boundary layer
profiles are expressed through the solution f(ξ) of the follow-
ing equation [26]:

f ′′′+ff ′′ = β(f ′2−1), f(0) = f ′(0) = 0, f ′(+∞) = 1.

Velocity is then given as a function of a similarity variable ξ:
u0(ξ) = f ′(ξ). The physical z coordinate is calculated for each
ξ as follows:

z = C

∫ ξ

0

T0(u0(ξ))dξ.

Temperature profile T0(u0) is given using the same expression
as in an adiabatic flow:

T0(u0) = 1 +
γ − 1

2
(M2
∞ − u2

0). (12)

Let us consider several profiles as examples. They are de-
noted as 1–5 in figure 4a and correspond to β = 2, 0.5,
0, −0.14, and −0.199. Note that profile 5 is a limit case
of the attached boundary layer, because du0(0)/dz < 0 for
β < −0.199, and the boundary layer separates from the plate.

Calculations have been conducted for parameters that corre-
spond to a steel plate at 3 km above sea level:

D = 23.9, Mw = 0, µ = 0.00012, γ = 1.4, (13)

and Mach number M∞ = 1.6.
The generalised curvature (u′0/T0)′ is plotted for these pro-

files in figure 4b, while values of ReB and ImB are shown in
figures 4c and 4d.
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Figure 4: Velocity profiles for accelerating and decelerating flows over heat-insulated plate for parameters (13), M∞ = 1.6,
Pr = 1: (a) velocity profiles, (b) generalised curvature, (c) ReB, (d) ImB. Curves 1–5 correspond to β = 2.0, 0.5, 0.0, −0.14,
−0.199.

It is seen in figure 4d that in the case of profiles 1 and 2,
ImB > 0, and the growth rate decreases when δ increases.
This is also seen in figure 5, where Imω is plotted versus
the boundary layer thickness for a particular wave number
k = 0.06.

In the case of profiles 3–5, ImB < 0 for waves travel-
ling with supersonic speed relative to the outer flow (i.e. for
c < M − 1), which means that the wave is amplified by the
boundary layer at δ < δ1 (figure 5). As proved above, the
smallness of |ReB| is a condition of the significant destabil-
ising effect of the boundary layer. It is seen in figure 4c that
amongst the profiles considered, |ReB| is the smallest for pro-
file 5 on a whole interval c < M∞−1. According to this, Imω
is significantly increased for this profile by the boundary layer
(figure 5).

4.3 Influence of the boundary layer on neutral and damped
waves

We have investigated the influence of the boundary layer on
waves that are growing in potential flow, that is, 0 < c <
M∞ − 1.

Now suppose that the wave is damped in potential flow, that

is, M∞ + 1 < c or c < 0. Then A is purely imaginary, and
ImA < 0. There is no critical point in the flow; therefore,
ImB = 0. Then 0 < Im(A + B)−1 < ImA−1, which means
that the boundary layer decreases the wave damping rate but
cannot result in its growth. Damped waves stay damped.
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Figure 5: Function Imω(δ) for profiles 1–5 in figure 4 for pa-
rameters (13), M∞ = 1.6, k = 0.06.
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Next, suppose that the wave is neutral in uniform flow, that is,
M∞−1 < c < M∞+1, and ImA = 0. IfM∞ 6 c 6 M∞+1,
then there is no critical point in the flow; therefore, ImB = 0.
The wave stays neutral in the boundary layer.

If the wave in uniform flow is neutral and M∞ − 1 < c <
M∞, then there is a critical point, and ImB 6= 0. Consider
two types of the boundary layer profile. In case of the flow
with a generalised convex profile, (u′0/T0)′ < 0, sign ImB =
− sign((u′0/T0)′) > 0. Consequently, Im(A + B)−1 < 0 and
Imω > 0, which means that the wave is destabilised by the
boundary layer. Note that the boundary layer itself (i.e. over a
rigid wall) is stable. This conclusion is similar to that obtained
by [5], who showed that for the Blasius boundary layer in in-
compressible fluid, elasticity of the plate yields destabilisation
of the layer as Re→∞.

Finally, suppose that the boundary layer profile has a gen-
eralised inflection point zinfl in the subsonic part of the layer
so that (u′0/T0)′ > 0 for z < zinfl and (u′0/T0)′ < 0 oth-
erwise (this is typical for boundary layers over a flat heat-
insulated plate; we restrict ourselves to this class of boundary
layers). Then waves that have critical points at z > zinfl, that
is, M∞ − 1 < u0(zinfl) < c < M∞, are destabilised by the
boundary layer because sign ImB = − sign((u′0/T0)′) > 0
and hence Im(A+B)−1 < 0. On the contrary, waves with such
phase speeds that M∞ − 1 < c < u0(zinfl) become damped.

Figure 6: Imω(δ) for k = 0.1. Numerical data are shown by
points, analytical solution (10) is represented by the curve.

5 INSTABILITY OF SHORT WAVES

5.1 Numerical method

In this section we consider waves whose lengths are short
enough so that the Rayleigh equation is solved numerically
as described in Section 3.2. For solving the dispersion equa-
tion (9), we use the following procedure. Having the problem
parameters, M∞, µ, D, Mw, δ, the velocity and temperature
profiles, and the wave number k, we search for a solution of

the dispersion equation ω(k) using iterative method. In the
first step of iterations ω1 is taken equal to the frequency of
the plate in vacuum

√
Dk4 +M2

wk
2. Now, let us have n-th

approximation, ωn. We numerically solve the Rayleigh equa-
tion, find the velocity perturbation v, and calculate the unsteady
pressure p(0, ωn) according to (3). For the next approxima-
tion we put ωn+1 =

√
Dk4 +M2

wk
2 + p(0, ωn). The pro-

cedure is repeated until the desired accuracy is achieved, i.e.,
|D(k, ωn)| < ε.

Figure 7: Imω(δ) for k = 0.175. Numerical data are shown by
points, analytical solution (10) is represented by the curve.

Figure 8: Imω(δ) for k = 0.275. Numerical data are shown by
points, analytical solution (10) is represented by the curve.

5.2 Results

We studied the velocity profile u0(η) = M∞sin(πη/2) and
the temperature profile (12) for parameters (13), M∞ = 1.6.
Calculated growth rate versus the boundary layer thickness,
Imω(δ), are plotted for a range of wave numbers k. For ”mod-
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erate” wave lengths, k = 0.025..0.100, there is a satisfactory
agreement between the numerical and analytical solution (10)
(figure 6).

With increasing k, starting from k = 0.125, a difference
between the numerical and analytical solution appears (fig-
ure 7) due to the second term in (2) neglected in the analyt-
ical solution. First, the maximum value of the growth rate
for the numerical solution becomes higher than for analyti-
cal for sufficiently large k. Namely, numerical results give:
max Imω(δ) ≈ 0.0012164, 0.0007332, 0.0000173, whereas
from (10) max Imω(δ) ≈ 0.0044722, 0.0007936, 0.0000091
for k = 0.125, 0.15, 0.25, respectively. Second, there is some
difference in the boundary layer thickness at which the maxi-
mum growth rate is achieved: numerical solution gives smaller
δ comparing with analytical (figure 7, 8). The third effect of
short waves is that Imω = 0 for δ lying outside a certain seg-
ment, as demonstrated in figure 8, whereas (10) gives non-zero
growth rates for any δ. The higher k, the more pronounced
these effects are.

6 CONCLUSIONS

In this paper we derived a dispersion relation for a plate in
supersonic flow with the boundary layer over the plate taken
into account. For ”moderate” wave lengths an analytical solu-
tion ω(k) is given and influence of the boundary layer on the
plate stability is analysed. For short waves, when the Rayleigh
equation cannot be simplified and solved analytically, numeri-
cal study is conducted. It is shown that the term of the order
of k2 in the Rayleigh equation yields additional destabilisation
for a certain segment of the boundary layer thicknesses. For δ
lying outside this segment, this term stabilizes the short waves.
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