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ABSTRACT
In this paper single mode panel flutter, which occurs at low

supersonic Mach numbers, is studied. Numerical analysis which
does not require solution of coupled FSI problem has been con-
ducted. Flutter boundaries obtained are compared with previ-
ously known analytical results.

INTRODUCTION
Panel flutter is self-exiting high-amplitude vibrations of

elastic plate in a gas flow. Arising at skin panels of flight ve-
hicles, such vibrations can lead to fatique damage of the panels
or structures linked to the panels (hydraulic tubes, etc). Panel
flutter was discovered in 1940-s and since was thourougly stud-
ied in supersonic and hypersonic gas flows. From mathematical
point of view, panel flutter problem consists of stability analysis
of coupled gas-plate equation (Fig. 1):
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where D and ρm are the plate stiffness and density, w(x,y, t) and
h is the plate deflection and thickness, and p = p(w(x,y, t),x,y, t)
is gas pressure perturbation, which in turn is a function of w.

At high Mach numbers, M, gas pressure is expressed
through a simple approximate formula, known as ”piston the-
ory”, which is valid for M� 1. By means of this formula, huge

amount of studies have been conducted [1, 2]. Type of flutter
which occurred at those studies is a ”coupled-type” flutter, which
appears due to interaction of two plate eigenmodes. Theory of
coupled-type flutter is in a good correlation with experiments at
M > 1.7.

At low supersonic Mach numbers another flutter type, ”sin-
gle mode” (or ”single degree of freedom”) flutter, usually oc-
curs. To date it was studied very little and have been mentioned
in a few papers [3–5]. However, during last years significant
progress in single mode panel flutter study has been achieved.
First, asymptotic theory of flutter, leading to a closed-form so-
lution, has been constructed, which brings light to a physical
phenomena of single mode flutter through analysis of waves
moving along the plate in a gas flow [6, 7]. Second, numer-
ical analysis of 2D problem has been conducted by means of
Bubnov-Galerkin method [8]. Flutter boundaries are in a good
agreement between numerical and analytical results in all stud-
ied range 1.05 < M < 2.7. Finally, experimental study has been
conducted, where single mode flutter was observed [9].

In this paper we study 3D single mode panel flutter in a vis-
cous gas flow using finite volume numerical code. Used is a
special method based on single mode flutter properties, which
does not require to solve coupled fluid-structure problem. The
paper consists of 3 sections. First, we will describe the analy-
sis method, then we will verify the method comparing 2D results
with the paper [8]. Finally, we will present results of 3D problem
study and compare it with analytical results [7].
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NUMERICAL METHOD OF FLUTTER PREDICTION
We study stability of a thin elastic rectangular plate in a

plane-parallel supersonic air flow. The plate is mounted into a
rigid plane as shown in Fig. 1. Undirsturbed plate is flat, but ar-
bitrary small disturbance lead to oscillation of the plate. These
oscillations perturb homogeneous air pressure, and the pressure
disturbance in turn affects the plate. Under the action of the pres-
sure disturbance the plate oscillations can be amplified (case of
flutter) or damped (case of stability).

M

w(x,y,t)
flat rigid 

plane

elastic plate

FIGURE 1. GEOMETRY OF THE PROBLEM.

As we are going to study single degree of freedom flutter,
we will assume that the flow is supersonic, but Mach number
is not very high, so that coupled type flutter is impossible (for
typical plates, approximately M < 1.7). Therefore only single
degree of freedom flutter can occur, which main feature is that
the eigenfrequencies and eigenmodes of the plate in the flow are
close to eigenfrequencies and eigenmodes of the plate in vacuum.

In order to study stability of the plate in a gas flow, we will
use finite-volume code Ansys CFX. Simulation domain is shown
in Fig. 2. The plate is assumed to be a part of the domain bound-
ary. In the domain Navier-Stokes equations are solved with no-
slip condition at the plate and rigid walls. At the inlet the gas
pressure velocity and temperature are specified, and no bound-
ary condition specified at the outlet. The plate oscillations are
modelled as a motion of the flow boundary. Specified displace-
ment coincides with the natural mode of the plate:

w(x,y, t) = W (x,y) · sin(ωt),

where W (x,y) and ω are plate natural mode and frequency. Thus,
the plate motion is modelled as prescribed harmonic motion of
the flow boundary.

Oscillation of the plate (in terms of the analysis, motion of
the domain boundary) leads to disturbance of the air pressure.
Analysis is running until the flow response to harmonic plate mo-
tion also becomes harmonic. Then analysis stops, and work done
by pressure during last oscillation period is calculated:

U =
T∫

0

∫
S

~p(x,y,z, t) ·~v(x,y, t)dsdt, (2)

elastic plate

outletinlet

FIGURE 2. SIMULATION DOMAIN.

where T = 2π/ω , S is the plate surface, ~p is a pressure acting on
the oscillating plate,~v = ∂w/∂ t is the plate velocity vector.

Sign of U is the plate flutter criterion. Indeed, if U > 0,
then energy flows from the gas flow to the plate, and the plate
oscillations are amplified. In this case plate amplitude increases,
and flutter occurs. Otherwise, if U < 0, then energy flows from
the plate to the flow and dissipates there. The plate damps, and its
undisturbed flat state is stable. This criterion should be checked
for every possible fluttering mode. If at least at one mode the
work (2) is positive, than the plate is unstable.

If we release the plate and let it oscillates itself, amplitude
will exponentially increase, if U > 0, or decrease, if U < 0. Thus
motion of the released plate is

w(x,y, t) = W (x,y) · sin(ωt)eδ t , (3)

where δ = δ (U) is the amplitude amplification rate.
We will assume that |δT | � 1 and derive formula for δ (U).

Multiplying Eqn. (1) by ~v = ∂w/∂ t and integrating by x and y
along the plate surface, we obtain the energy balance equation:
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is the total plate energy.
Integrating Eqn. (4) by t, we obtain that at each oscillation

period energy of the plate is changed by U :

∆E(t)t=0...T = U (6)

We see again, that if U 6= 0, free plate motion is not harmonic.
Substitution of Eqn. (3) into Eqn. (5) yields
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Expanding e2δ t = 1 + 2δ t for |δ t| � 1 and omitting terms of
order of (δT )2 and higher, we obtain:

∆E(t)t=0...T = δρmhT ω
2
∫
S

W 2(x,y)ds.

Using Eqn. (6) yields:

δ (U) =
U

2πωρmh
∫
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S
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We will analyze plate of Lx×Ly size simply supported at all
edges. Therefore
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)
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)
,

where |A| � 1 is the oscillation amplitude, and
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Finally,

δ (U) =
2U

πωρmhA2LxLy
=

U ·T
π2ρmhA2LxLy

(7)

VERIFICATION OF THE METHOD
In order to verify the method of flutter analysis described

above, 2D problem was considered first. A steel plate, 0.3×
0.001 m size is studied in air flow. The results have been com-
pared with [8], where the same problem was studied through
Bubnov-Galerkin method. In that paper the equation of thin plate
bending and potential gas flow were used. It was shown that at
parameters considered there are two regions of instability of first
4 modes: single mode flutter at 1 < M < 1.45 and coupled-type
flutter at M > 2.29.

FIGURE 3. MESH OF 2D PROBLEM.

Mesh size used to calculate the work is 50 (flow) ×120 vol-
umes and is shown in Fig. 3. Formula (7) in 2D case takes the
form

δ (U) =
U

πωρmhA2LxLy
=

U ·T
2π2ρmhA2LxLy

, (8)

where Lx is considered as the plate width in the flow direction,
and Ly is characteristic length in out-of-plane direction.

Calculated amplification rate δ for 2D problem is shown in
Fig. 4 together with results of [8]. One can see that curves cor-
responding to modes 1, 2 and 3 from analysis presented here
and from [8] are in a good agreement. Absolute values of δ are
different, but flutter boundaries (Mach numbers M∗n , M∗∗n where
δ (M) = 0, such that n-th mode is unstable at M∗n < M < M∗∗n )
shown in Table 1 are close. A little worse correlation is ob-
served at M ≈ 1. This is explained by the fact that in the present
study we assumed that the real part of each eigenfrequency is not
changed by the flow. This condition is satisfied worse as M tends
to 1. In Fig. 5 shown are real parts of calculated frequencies [8]
and the plate frequencies in vacuum.

3 Copyright c© 2010 by ASME



-4.0E+02

-3.0E+02

-2.0E+02

-1.0E+02

0.0E+00

1.0E+02

2.0E+02

3.0E+02

4.0E+02

1 1.1 1.2 1.3 1.4 1.5 1.6

Mode 1 BG Mode 2 BG Mode 3 BG

Mode 1 Mode 2 Mode 3

FIGURE 4. δ (M) (Hz) FOR 2D PROBLEM. ”BG” DENOTES
DATA FROM [8], OTHER CURVES ARE FROM THE PRESENT
STUDY

0

200

400

600

800

1000

1200

1400

1600

1800

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

mode_1 mode_2 mode_3

mode_1 vacuum mode_2 vacuum mode_3 vacuum
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Asymptotic analysis [6] yields its unique instability criteria
for each plate eigenmode. Namely, if

ωn =

√
D

ρmh

(
πn
Lx

)2

is circular frequency of the n-th mode, this mode is unstable at
M∗n < M < M∗∗n , where

M∗n = 1+
√

λn, M∗∗n =
√

1+λn +
√

4λn +1, (9)

TABLE 1. FLUTTER BOUNDARIES M∗n , M∗∗n .

n M∗n pr. M∗∗n pr. M∗n [8] M∗∗n [8] M∗n [6] M∗∗n [6]

1 1.03 1.43 < 1.05 1.42 1.05 1.42

2 1.07 1.45 1.10 1.43 1.10 1.42

3 1.12 1.44 1.10 1.44 1.15 1.44

4 — — 1.20 1.45 1.20 1.45

λn =

√
D

ρma4h
ωn

In this formula a is speed of sound of the gas flow. Results are
shown in Table 1.

Thus single mode flutter boundaries obtained in the present
study are in a pretty good agreement with analytical [6] and nu-
merical [8] results and therefore this method can be used in 3D
problem study.

RESULTS
Simulation domain is shown in Fig. 2. Mesh size used to

calculate the work is 52 (flow) ×76 (normal to the plate) ×50
volumes and is shown in Fig. 6.

FIGURE 6. MESH OF 3D PROBLEM. CUT VIEW NORMAL TO
THE PLATE IS SHOWN.
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PLATE IN A HOMOGENEOUS FLOW
A set of simply supported steel plates in air flow were con-

sidered. Plate sizes were varied from 150×270 to 600×1080 m,
ratio of side lengths was keeping constant. Thickness of all plates
was 0.001 m. Material properties are: E = 2 ·1011 Pa, ρ = 7800
kg/m3, air flow parameters are: p = 101000 Pa, T = 273 K,
a = 330 m/s, air velocity was varied.
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FIGURE 7. WORK DONE BY PRESSURE (kg·m2/s2) VS MACH
NUMBER FOR THE (2,1) MODE.

In Fig. 7 shown are results of analysis for the mode (2,1) (the
first number is quantity of semi-waves along spanwise direction,
second number is quantity of semi-waves along chordwise di-
rection). Comparison of the obtained single mode flutter bound-
aries with analytical results [7] is presented in Table 2. One can
see that difference between present numerical and analytical [7]
flutter boundaries is very small both for upper and lower critical
Mach numbers.

INFLUENCE OF BOUNDARY LAYER
Effect of the boundary layer has been previously studied in

[1]. It was noticed that appearance of the boundary layer reduces
region of instability in the parameter space and can even make
the plate stable. That is why in addition to studies of the plate
stability in a homogeneous air flow, boundary layer influence has
been also studied in this paper. Velocity profile at the inlet as well

TABLE 2. FLUTTER BOUNDARIES M∗2,1, M∗∗2,1 FOR (2,1) MODE.

Plate size M∗2,1 pres. M∗∗2,1 pres. M∗2,1 [7] M∗∗2,1 [7]

150×270 1.24 1.47 1.25 1.51

210×378 1.17 1.46 1.19 1.49

300×540 1.14 1.51 1.14 1.48

420×756 < 1.10 1.52 1.11 1.47

510×918 < 1.10 1.53 1.10 1.47

600×1080 < 1.10 1.54 1.09 1.47

as initial condition for the analysis was specified as follows:

v(y) = v∞ arctan
(

63.65y
d

)
2
π

,

where d is the boundary layer thickness. Inside the layer, velocity
changes from 0 at y = 0 (plate surface) to 0.99v∞ at y = d.

Results of the analysis are shown in Fig. 8 for the plate of
300× 540 size, mode (2,1), at M = 1.2. Boundary layer thick-
ness dramastically decreases the work, which in its turn is pro-
portional to the amplification rate. Critical layer thickness is
d = 0.01 m, the plate becomes stable at this or higher d.

CONCLUSIONS
Single mode flutter of rectangular plate is studied using An-

sys CFX finite volume code. Boundary mesh nodes were moved
in order to model plate eigenmode. Work done by pressure dur-
ing last oscillation period is calculated. Sign of this work is the
flutter criterion.

In order to verify the method, results of 2D problem were
compared with papers [6] and [8]. Flutter boundaries are in a
good agreement between those two papers and the present study.

For rectangular plates (3D problem), flutter boundaries are
presented for several plate sizes and compared with analytical
results [7]. Maximum difference between critical Mach number
is less than 0.07 for both upper and lower flutter boundaries.

Boundary layer influence on the flutter boundaries is studied
for 300×540×1 plate. It is shown that boundary layer thickness
≈ 0.01 m is enough to suppress single mode flutter at M = 1.2.
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