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ABSTRACT
In this paper aeroelastic instability of a plate in a gas flow is

investigated by direct time-domain numerical simulation. Plate
deformation and gas flow are simulated in solid and fluid codes,
respectively, with direct coupling between these codes. A series
of simulations under different parameters has been conducted.

Three types of the plate response have been observed: sta-
bility, static divergence and flutter. Depending on Mach number,
two types of flutter were detected: single mode flutter and cou-
pled mode flutter. At M = 1.8, a good correlation between the
present study and the piston theory for coupled mode flutter has
been obtained. At lower M, from 1 to 1.6, single mode flutter in
1st, 2nd and higher modes has been observed. Amplitudes and
frequencies of flutter limit cycle oscillations have been studied.
It is shown that limit cycle oscillations can occur in form of pure
one-mode oscillations, or include 1:2 internal resonance, when
fluttering mode excites another mode. In the region of Mach
numbers from 1.3 to 1.5, where several plate modes are simulta-
neously unstable, transition from periodic to quasi-chaotic flutter
oscillations occurs.

INTRODUCTION
Aeroelastic instability of plates in a gas flow has been stud-

ied in many papers in context of panel flutter problem [1–5]. In
case of subsonic flow the primary instability type is static (diver-
gence), whereas in supersonic flow instability is oscillatory (flut-
ter). Flutter instability in turn can be either coupled-mode flutter,
or single-mode flutter. The first one occurs due to coalescence of
eigenfrequencies; it has been studied in detail using aerodynamic
”piston theory”. The other flutter type, single mode flutter, oc-
curs at lower flow speeds, and is studied insufficiently. In recent
years detailed investigation of linear single mode flutter bound-
aries has been conducted [6,7], also this flutter type has been ob-
served in experiments [8]. Unusual result that has been obtained
is that there is a range of Mach numbers and plate lengths where
several plate eigenmodes are unstable. Hence, when initial per-
turbation consisting of those modes is growing, formation of the
limit cycle is governed by nonlinear interaction of the unstable
eigenmodes.

Several time-domain simulations of nonlinear panel flutter
were performed at conditions of transonic and low supersonic
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speeds [9–11]. However, authors of the papers cited did not dis-
tinguish flutter type and did not investigate frequency spectra.
From our point of view, analysis of spectrum, investigation of
linear growth mechanism and of limit cycle type are extremely
important due to different behaviour of flutter boundary and os-
cillation amplitude when changing the problem parameters. In
particular, extrapolation of simulation results obtained for cer-
tain parameters to a wider parameter range is sensitive to flutter
mechanism and structure of the limit cycle.

In this paper aeroelastic instability of a plate in a gas flow is
investigated by direct time-domain numerical simulation. Plate
and gas flow motion are modelled in solid and fluid codes, re-
spectively, with direct coupling between them. The main goal
of the paper is to investigate nonlinear development of growing
oscillations in case of several growing eigenmodes.

Note that in contrast to studies [9–11], where the flow over
one side of the panel was considered, we investigate the flow
over both sides of the panel (Fig. 1). This, generally speaking,
can yield different limit cycle oscillations due to difference in
nonlinear aerodynamics. However, due to similar equations for
linearized flow, stability boundaries coincide when comparing
flow over both plate sides and over one side with two times higher
flow density.

FORMULATION OF THE PROBLEM
We investigate motion of an elastic plate in a uniform air

flow (Fig. 1). The problem is 2-dimensional. Unperturbed state
of the plate is flat; the gas flows with a constant speed along both
sides of the plate.

Lp

v

hp

FIGURE 1. PLATE IN A GAS FLOW.

To simulate the plate motion, we use nonlinear Mindlin
model, where elastic strains are calculated through Koiter-
Sanders shell theory. The plate has dimensions 0.7× 0.001 m
and consists of three pieces: leading and trailing pieces are fixed,
whereas the middle piece is free (Fig. 2). This is equivalent to
considering only the middle piece of Lp = 0.3 m length and ap-
plying clamping boundary conditions w(x, t) = ∂w(x, t)/∂x = 0
at its edges. Steel material properties were used in calculations:
Young’s modulus E = 2 ·1011 Pa, Poisson’s coefficient ν = 0.3,
density ρm = 7800 kg/m3.

0.15 m 0.25 m0.3 m

elastic piece of the plate  

rigidly fixed pieces

FIGURE 2. BOUNDARY CONDITIONS FOR THE PLATE.

inlet

free outlet

free-slip 

condition

plate

FIGURE 3. BOUNDARY CONDITIONS FOR THE GAS FLOW.

During a short initial time range t = 0...ε , where ε =
0.0002 s, a slight disturbance force is applied to the panel in order
to simulate initial perturbation of the system. At t > ε no exter-
nal force is applied to the plate or gas flow, so that behaviour of
the system is governed by fluid-structure interaction only.

Simulation domain of the gas flow is square 0.6× 0.6 m,
which is shown in Fig. 3. The flow is viscous and is governed by
Navier-Stokes equations for perfect gas. We neglect the bound-
ary layer and investigate flutter in uniform flow, that is why in-
stead of classical no-slip condition at the plate surface we assign
free-slip condition: vn = vp, ∂vτ/∂n = 0, where subscripts ”n”
and ”τ” denote normal and tangent velocity components, vp is
the plate vertical velocity. This way we avoid formation of the
boundary layer and do not need to excessively refine the mesh
near the plate. In fact, this is equivalent to simulating flow of
inviscid fluid; the reason why we did not use Euler equations
directly is limitation of the aerodynamic code used to solve the
problem.

Other boundary and initial conditions for the flow are as fol-
lows: we set uniform flow parameters at the inlet for any time t
and homogeneous distribution of the same parameters over the
simulation domain at t = 0 (initial condition). Temperature at
inlet is equal to 273 K in all calculations. Two other flow pa-
rameters, namely, flow speed and density, are varied. Hereafter
we will use two dimensionless parameters representing flow con-
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dition: Mach number M = v/a and dimensionless flow density
µ = ρ/ρm, where a is speed of sound, and ρ is the flow density.
At the top, bottom, and aft domain boundaries condition of free
flow outlet is assigned (Fig. 3).

ti-1 ti ti+1

ti-1 ti ti+1

Fi

simulation of 

solid structure 

in Abaqus

simulation of 

gas flow

in FlowVision

wi+1, vi+1

Fi-1

wi, vi

Fi+1}

exchange time step τi+1=ti+1-ti

FIGURE 4. EXCHANGE ALGORITHM BETWEEN FLOWVI-
SION AND ABAQUS.

METHOD OF SOLUTION
Analysis is conducted by using two coupled commercial

codes. Plate motion is simulated in Abaqus, which is a widely
used finite-element code oriented to stress analysis. The flow is
simulated in FlowVision code developed by Tesis LTD, which
uses finite volume method and is oriented to aero/hydrodynamic
applications.

Interaction between the codes is organised through direct
coupling mechanism along the surface of the deformed plate
[12, 13]. Both codes are executed in turns; exchanges occur
at each time step (generally not related to internal time steps
of Abaqus and FlowVision) according to conventional serial
staggered (CSS) procedure (Fig. 4). Each subsystem of equa-
tions (solid and fluid) is solved until the exchange time step is
achieved, where results are sent to the other subsystem. Namely,
displacements and velocities of the plate points are sent from
Abaqus to FlowVision; pressure distribution along the plate sur-
face is sent back from FlowVision to Abaqus. If the exchange
time step coincides with each subsystem’s time step, then the
scheme becomes explicit, even if each subsystem solver uses im-
plicit numerical scheme. Generally, exchange time step, fluid
solver time step and solid solver step can be different.

Mesh properties used in simulation are as follows. Abaqus
plate model consists of hexagonal finite elements, 200 (length)
×2 (through the plate thickness) mesh size. FlowVision flow
model consists of 50 (length) ×772 (height) finite volumes. Ver-
tical finite volume dimension varies from 0.0001 m near the plate
to 0.01 m far from the plate. A special mesh convergence study
was performed (results are presented in the next section), which
shows that the mesh is refined enough to obtain accurate limit cy-
cle solution. When solving the problem with moving boundary,

FlowVision uses subgrid resolution technique [12] to capture the
plate motion.

We use implicit Abaqus solver for structural motion, and set
fixed time step 0.0001 s. If Abaqus-Flowvision exchange time
point is achieved earlier than Abaqus simulation time at the next
interation, Abaqus step time is automatically reduced accord-
ingly. FlowVision solver is also implicit; adaptive time step is
based on maximum convective (=10) and surface (=1) Courant
numbers. Abaqus-Flowvision exchange time step is equal to
FlowVision time step.

Let us now observe results obtained at various flow condi-
tions. It is convenient to analyze plate behavior after perturbation
force applied by deflection A of a reference point plotted versus
time. Reference point is located at 0.22 m downstream of the
leading edge of the plate (Fig. 5). Fourier analysis was used to
determine spectral components of limit cycles observed.

Three types of the plate behavior were observed: stability,
divergence, and flutter. In the case of stability perturbed plate
oscillates with rapidly decreasing amplitude and returns to the
initial position. Reference point behavior is plotted in Fig. 6a. In
the case of divergence (which was detected only for M < 1) plate
also oscillates with decreasing amplitude, however, in contrast
to stability, it is finally stabilizes in deflected position (Fig. 6b).
In the case of flutter (which was observed only for M ≥ 1) plate
oscillation amplitude increases and then stabilizes at a non-zero
value; the plate oscillates in a limit cycle (Fig. 6c).

CONVERGENCE STUDY
In order to ensure the numerical adequacy of the model we

conducted a series of test simulations under the same physical
parameters and different computational parameters: grid size and
time steps, also we checked influence of disturbance force ampli-
tude and its direction in order to make sure that instability is due
to fluid-structure interaction and not because of numerical inac-
curacies.

Shown in Fig. 7a are simulation results obtained on differ-
ent grid sizes of the flow domain. It is seen that the limit cycle is
the same in both cases. A small phase shift occurs due to slight
difference in initial phase of oscillation growth. As the limit cy-
cles almost coincide, we conclude that convergence in grid size

0.22 m

0.3 m

Reference 
point

M

FIGURE 5. REFERENCE POINT LOCATION.
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FIGURE 6. DEFLECTION OF THE REFERENCE POINT VS.
TIME: STABILITY (a), DIVERGENCE (b), FLUTTER (c).

is achieved.
In Fig. 7b simulations with two time steps are shown. They

correspond to Courant number (CFL) 2 and 10. Results almost
coincide, which means that convergence in time step is achieved.

Shown in Fig. 8 are plate oscillations for different ampli-
tudes of disturbance. Despite different initial phase of limit cy-
cle formation, caused by different disturbance amplitude, in all
cases the resulting limit cycle is the same. This proves that nu-
merical model is adequate, and the limit cycle oscillations are
cause by physical fluid-structure interaction. Also, calculations
at different initial load directions were conducted. They showed
that reverse of the perturbation load yields symmetrical panel os-
cillations, which also confirms correctness of the model.

RESULTS: OBSERVATION OF COUPLED MODE FLUT-
TER

We start analysis of obtained results with coupled mode flut-
ter. This type of flutter occurs due to coalescence of two plate
eigenfrequencies modified by the flow. Investigation of this flut-
ter type is interesting due to two reasons. First, we watch ap-

CFL=10 

A×103 (m)
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grid 50x1524 grid 200x772 
grid 50x772 

A×103 (m)

0
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-2

0.080.04 t (s)

grid 100x772 

(a)

(b)

FIGURE 7. REFERENCE POINT DEFLECTION OBTAINED
ON DIFFERENT GRIDS FOR M = 1.15, µ = 8.17 · 10−5 (TOP);
DEFLECTION OBTAINED WITH DIFFERENT TIME STEPS
FOR M = 1.06, µ = 8.17 ·10−5 (BOTTOM).
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FIGURE 8. REFERENCE POINT DEFLECTION IN TIME FOR
DIFFERENT PERTURBATION LOAD, M = 1.06, µ = 8.17 ·10−5.

proaching and coalescence of eigenfrequencies while increasing
Mach number, and occurrence of a limit cycle after the coales-
cence. Second, there are a lot of theoretical results obtained by
using piston theory [1–3], and comparison of flutter boundary
obtained in this study with classical results is one more indepen-
dent test of the model.

We set Mach number M = 1.82 and vary dimensionless flow
density µ in the range 1.5 ·10−5 ≤ µ ≤ 2.5 ·10−4. These param-
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eter values are chosen such that piston theory is still valid, and
according to [1] coupled mode flutter should occur. Spectrum of
the limit cycle should consist of one frequency located between
the first and second natural frequency of the plate, that is why
disturbance force that we applied contains both first and second
natural plate modes.

A×10
3
 (m)

-0.8

-0.4

0

0.4

0.8

0.04 0.08 t (s)

μ=0.8×10
-4

μ=1.6×10
-4

(a)

(b)

FIGURE 9. DEFLECTION OF THE REFERENCE POINT (a),
OSCILLATION MODE SHAPE (b) IN CASE OF COUPLED
MODE FLUTTER.

We obtained that when µ is not too large, plate oscillates
with a small amplitude decreasing in time (Fig. 9a). Spectrum
mostly consists of two frequencies. When increasing µ , the first
frequency increases, while the second decreases, as shown in
Fig. 10a. In this plot results of linear eigenfrequency calcula-
tion [7] are also plotted for comparison; it seen that the difference
is negligible. At µ = µcr the first and the second frequencies co-
alesce. At µ > µcr only one frequency is detected in oscillation
spectrum, which grows with increase of µ . Coalescence is ac-
companied by appearance of a limit cycle, whose amplitude in-
creases with increase of µ (Fig. 10b). Oscillation mode shape is
shown in Fig. 9b. It looks like a mixture of the first and second
natural plate modes: it has a node located approximately at 1/4
plate length from the leading edge; amplitude of the rear part of
the plate is much higher than that of the front part.

Critical dimensionless flow density (i.e. flutter boundary)
obtained in simulation is µcr = 1.143 · 10−4. Formula derived

0 

0.4 

0.8 

1.2 

1.6 

μ
cr 

A×10
3

 (m) 

μ×10
4 

0 1 2 

Ω (Hz) 

Ω2 

Ω1 

Ω3 
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200 
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FIGURE 10. THE FIRST THREE EIGENFREQUENCIES (RE-
SULTS OF THE PRESENT STUDY AND OF [7]) (TOP), OS-
CILLATION AMPLITUDE (BOTTOM) IN CASE OF COUPLED
MODE FLUTTER.

through piston theory [3] gives the following criterion of coupled
mode flutter:

M2
√

M2−1
>

Dp

a2ρL3
p

λcr, (1)

where Dp = Eh3/(12(1−ν2)) is the plate stiffness. Value of λcr
depends on boundary conditions; for the plate clamped at both
edges λcr = 636 [3] . Note that criterion (1) was obtained for gas
flowing over one side of the panel, whereas in this simulation
both plate sides contact the flow. Hence the flow density in (1)
should be two times higher. Substitution of M = 1.82 and plate
parameters into (1) yields µcr = 1.167 ·10−4. This value is in less
than 2% difference with the value obtained in simulation.

Therefore we conclude that coupled mode flutter boundary
is correctly captured by the simulation. It is also seen that over-
all coupled mode flutter properties, such as coalescence of eigen-
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frequencies and LCO mode shape are correctly simulated. This
provides additional verification of the model, and we can now
proceed to results obtained for lower Mach numbers, which are
the primary interest of this work.

RESULTS: OBSERVATION OF PANEL DIVERGENCE
AND SINGLE MODE FLUTTER

For analysis of panel behavior at subsonic, transonic and low
supersonic Mach numbers we fixed µ = 8.17 · 10−5 and varied
M from 0.7 to 2.0. This value of µ is small enough (compare
with µcr from the previous section) to avoid any coalescence of
eigenfrequencies, and hence coupled mode flutter.

t (s)

A×10
3
 (m)

0.080.04 0.12
0

0.8

0.4

1.2

control node

(a)

(b)

FIGURE 11. REFERENCE POINT DEFLECTION IN TIME (a),
PLATE SHAPE (b) AT DIVERGENCE. M = 0.909.

For the parameters chosen the plate is stable for M ≤ 0.73.
At M > 0.73 perturbed plate makes several oscillations and stabi-
lizes at a deformed state. Deflection of the reference point tends
to a constant value as t → ∞ (Fig. 11a). Shape of the diverged
plate is very close to the first natural mode shape (Fig. 11b). Such
a panel divergence was obtained in calculations for M = 0.818,
0.909, and 0.969.

Mach number M = 1 corresponds to a borderline state be-
tween divergence and single mode flutter. Plate oscillates with
a frequency 23.5 Hz, which is more than twice lower than the
first natural frequency, as plotted in Fig. 12a. In contrast to os-
cillations that occur at higher M, the plate motion is delated in
state of maximum and minimum deflection. The plate diverges
upward and stays in this position some time. This delay can be
considered as local stability of the diverged state of small dura-
tion. However, aerodynamic pressure at M ≈ 1 cannot anymore

support the plate in static position, and the plate buckles to the
opposite diverged state. In result oscillations are far from har-
monic; in fact they consist of opposite divergence states changing
each other. Oscillation mode shape looks like a traveling wave
(Fig. 12b), exactly as predicted in [9].

-1

0

1
A×10

3
 (m)

0.2 t (s)0.1

0

2

4

0 50 100 150 200 250

Ω (Hz)

(a)

(b)

(c)F×10
4

reference point

FIGURE 12. REFERENCE POINT DEFLECTION IN TIME
(a), PLATE SHAPE (BLACK CURVES REPRESENT MOTION
DOWN, GRAY CURVES REPRESENT MOTION UP) (b), SPEC-
TRUM (c) AT M = 1.0.

Let us now proceed to M > 1. Note that smallness of the
flow density excludes possibility of coupled mode flutter occur-
rence, therefore all oscillations that will be observed hereunder
are caused by single mode flutter and nonlinear mode interaction.

In the range of Mach numbers 1.0 < M ≤ 1.12 we observed
pure single mode flutter oscillations (Fig. 13). Plate shape looks
close to the first natural mode shape; deflections of the plate up-
ward and downward are symmetrical to each other. Oscillations
have a certain component of travelling wave, however the more
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DOWN, GRAY CURVES REPRESENT MOTION UP) (b), SPEC-
TRUM (c) AT SINGLE MODE FLUTTER. M = 1.06.

Mach number is, the more standing oscillation is. Spectrum of
the reference point consists of two peaks being in ratio 1:3. The
second peak is caused by a cubic nonlinearity of the plate and is
not associated with a separate eigenmode.

In the range 1.12 < M < 1.33 two types of limit cycle os-
cillations have been obtained. The first is a continuation of the
symmetrical limit cycle from lower M. The second limit cycle
is not symmetrical (Fig. 14). During the initial phase of oscil-
lation growth the plate oscillates symmetrically, the mode shape
is the same as in Fig. 13b. Starting from a moment when non-
symmetry appears, growth of the second natural mode is clearly
seen in oscillation shape (Fig. 14b). Oscillations are standing;
no travelling wave component is present. Also, one more peak
appears in oscillation spectrum, which is in 1:2 ratio with the
frequency of the first peak. We conclude that growth of the sec-
ond natural mode and non-symmetry of oscillations is caused by
internal 1:2 resonance between the first and the second modes.
Note that possibility of such a limit cycle that includes internal
resonance was analytically proved in [14].

For the value of Mach number M = 1.33, high-frequency
limit cycles were observed. This case apparently is a borderline
between 1:2 resonant oscillations and quasi-chaotic oscillations
described below.
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FIGURE 14. EXAMPLE OF REFERENCE POINT DEFLEC-
TION IN TIME (a) PLATE SHAPE (VERTICAL SCALE 50:1) (b)
AND FOURIER DIAGRAM (c) UNDER THE FLUTTER WITH IN-
TERNAL RESONANCE. M = 1.3.

In the range of Mach numbers 1.36 ≤M < 1.42 oscillation
process dramatically changes (Fig. 15). Initially the plate oscil-
lates in the first mode, later the second mode appears due to 1:2
resonance, as described above. However, little by little perturba-
tions in form of third, forth and fifth mode shapes appear. In con-
trast to the first and second mode, oscillations in higher modes
are not periodic. Though for M = 1.33 such oscillations yield
high-frequency limit cycle, for higher M this is not the case. Due
to nonlinear mode interaction oscillations in the first and second
modes loose periodicity and all the process becomes chaotic-like,
with no specific mode dominated.

However, these oscillations are not ”fully” chaotic. Indeed,
according to [15], there are four criteria that must be satisfied to
consider the process as truly chaotic:

1. Chaotic-like overall behaviour
2. Presence of wide frequency bands in the spectrum
3. Decrease of the autocorrelation function
4. Poincaré section consists of points filling an open set of the

space

7 Copyright © 2014 by ASME



A×10
3
 (m)

0

2

-2

t (s)0.4 0.60.2

(a)

0

2

-2

t (s)1.1 1.30.9

(b)

0

2

-2

t (s)1.8 2.01.6

(с)

FIGURE 15. OSCILLATION PROCESS AND TRANSITION
FROM LIMIT CYCLE TO QUASI-CHAOTIC HIGH-FREQUENCY
OSCILLATIONS FOR M = 1.39. (a) DEVELOPMENT OF
A LIMIT CYCLE, t = 0...0.7 s; (b) TRANSITION TO HIGH-
FREQUENCY OSCILLATIONS, t = 0.7...1.4 s; (c) DEVEL-
OPED HIGH-FREQUENCY NON-PERIODIC OSCILLATIONS,
t = 1.4...2.1 s.

Consider the first three criteria in series. A close-up view
of the resulting chaotic-like oscillations is shown in Fig. 16a; no
periodicity of the reference point deflection is detected. Plate
shapes captured at different moments of time are shown in
Fig. 16b; it is seen that there is no apparent regularity of the
shapes: they include all mode shapes from the first to the sev-
enth. Video of the oscillation process clearly shows a non-regular
motion of the plate.

However, the second criterion shows essential regularity of
the spectrum, which is shown in Fig. 16c. As well as for sin-
gle mode and resonant limit cycles, it consists of several clear
peaks, which mean that the oscillations mostly consist of several
single-frequency components. However, in contrast to previous
cases, their frequencies are not in a simple ratio. Namely, two
dominating frequencies are f3 = 371 and f4 = 603 Hz, which is

2.082.04 t (s)2.062.02

A×10
3
 (m)

0

2

-2

reference point

0
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4

6

8

0 400 800 1200 1600 2000
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FIGURE 16. REFERENCE POINT DEFLECTION (CLOSE-UP
VIEW OF THE FIGURE 15) (a), PLATE SHAPE (VERTICAL
SCALE 30:1) (b), OSCILLATION SPECTRUM (C). M = 1.39.

in 8:13 ratio. This means that the attractor has a significant 8:13
internal resonance component. Though lower peaks, f1 = 89 and
f2 = 168, have much less amplitude, they are present, and re-
late to the two dominating peaks at other ratios. Namely, f1 :
f3 ≈ 6 : 25, f2 : f3 ≈ 5 : 11. Higher frequency peaks, f5 = 835,
f6 = 1117, f7 = 1340, f8 = 1573, and f9 = 1863 Hz, are the
derivatives of the dominating ones due to cubic nonlinearity of
the plate: f5 = 2 f4− f3, f6 = 3 f3, f7 = 2 f3 + f4, f8 = 2 f4 + f3,
f9 = 5 f3.

Let us now consider the third criterion. We define the auto-
correlation function as follows:

F(τ) = lim
t1→∞

∫ t1
t0+τ

Â(t)Â(t− τ)dt∫ t1
t0+τ

Â2(t)dt
, (2)

where Â(t) is the centred function A(t):

Â(t) = A(t)− 1
t1− t0

∫ t1

t0
A(t)dt.
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Denominator in the fraction (2) is taken for normalisation so that
F(0) = 1. For periodic process the autocorrelation function is
also periodic, whereas for a truly chaotic process it should be a
decreasing function of τ . As the function A(t) can be numerically
obtained only for a limited range of times, we did not take the
limit as t1→∞ and specified t1 to be the last time for which A(t)
was calculated. As the integration period is limited, we calcu-
lated the autocorrelation function up to τ = (t1− t0)/2. In order
to consider only quasi-chaotic part of oscillations, we specified
t0 = 1.64, and t1 = 2.64 s. Resulting autocorrelation function is
not decreasing so that the oscillations cannot be considered as
truly chaotic.

On the other hand, the forth criterion is satisfied, i.e.
Poincaré section fills a full segment. This means that the attractor
is not a ”pure” limit cycle, as could be thought from the spectral
and autocorrelation function criteria. Apparently, it actually has
a dominating regular limit cycle component and a small quasi-
chaotic component.

When Mach number is increased more, chaotic-like oscil-
lations disappear. Surprisingly, in the range 1.42 ≤ M ≤ 1.67
oscillations again occur in form of a limit cycle. For M = 1.42
it consits of two frequencies, 366 and 609 Hz, being in 3:5 ratio,
without any quasi-chaotic components, i.e. the oscillations are
purely periodic. For M = 1.44 and 1.45, the limit cycle consists
of two first natural modes; for higher M it has the first natural
mode only. For the latter case, typical reference point deflection,
plate shape and spectrum are similar to those shown in Fig. 13. In
other words, starting from M = 1.42, attractors of the plate mo-
tion passes the same stages as before chaotic-like oscillations, but
in the reversed order. When increasing Mach number, limit cy-
cle amplitude decreases and becomes almost zero for M > 1.67,
which means return to stability of the flat state of the plate. This
stability retains for higher M until coupled-mode flutter occurs.
For the dimensionless flow density µ = 8.17 ·10−5 considered in
this study, according to (1) the coupled mode flutter occurs for
M > Mcr = 2.92.

Finally, let us now consider oscillation amplitudes (namely,
amplitudes of the reference point) plotted in Fig. 17a. When the
plate diverges, starting from M ≈ 0.73, increase of Mach num-
ber yields increase of the divergence amplitude. When passing
through M = 1, instability converts from divergence to flutter,
which is accompanied by a slight drop of the amplitude. Next,
when single mode flutter occurs, amplitude increases with in-
crease of M even more rapidly than at divergence. Passing
through the region of flutter with internal resonance yields split
of the amplitude graph: plate oscillations are non-symmetric so
that upper and lower graphs represent higher and lower ampli-
tudes. For the same Mach numbers, single mode limit cycle also
exists, which means co-existence of two limit cycles. At M≈ 1.3
maximum of amplitude is achieved: A ≈ 0.0038 m. Further in-
crease of Mach number is accompanied by decrease of the am-
plitude, and by passing regions of high-frequency periodic and

non-periodic (quasi-chaotic) oscillations. Beyond the region of
non-periodic oscillations, oscillation types are passed in the re-
versed order: high-frequency periodic oscillations, 1:2 resonant
limit cycle, and finally first-mode limit cycle. Then the plate re-
turns to the stable state.

theory [14]
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FIGURE 17. AMPLITUDE OF DIVERGENCE AND FLUTTER
(a); FREQUENCIES OF SPECTRAL PEAKS (b) VERSUS
MACH NUMBER .

Important consequence from Fig. 17a is that typical single
mode flutter amplitude is several times higher than that of cou-
pled mode flutter (Fig. 10). This means that single mode flutter
can cause fatigue damage much faster, and, hence, it is more
dangerous. Region of chaotic-like oscillations is especially dan-
gerous: despite deflection amplitude is of the same order as for
single mode limit cycle, plate shape at chaotic oscillations con-
sists of higher natural mode shapes, hence stress amplitude of
chaotic oscillations is much higher than that of the single mode
limit cycle.

The closed-form solution for single mode flutter amplitude

9 Copyright © 2014 by ASME



[14] plotted in the same figure shows the qualitative agreement
between the numerical and analytical results. Two quantitative
differences are seen: oscillations occur at lower M and grow
slower than in [14]. The first difference is caused by the fact
that in this study flutter occurs immediately at M ≥ 1, while an-
alytical theory [14] (not applicable to transonic flows) assumes
that it occurs at a slightly higher M. The second difference is due
to different plate models (von Karman vs Mindlin plate theory),
which yields different plate behaviour at amplitudes of the or-
der of several plate thicknesses. Also, linear aerodynamics was
assumed in [14], which is true only for small-amplitude plate os-
cillations.

Plotted in Fig. 17b are dominating frequencies of spectral
peaks (except the triple frequency of the first one: it is caused
by cubic plate nonlinearity and is not associated with a separate
eigenmode). It is seen that frequency growth in single mode flut-
ter region is almost linear. Frequency of non-resonant limit cy-
cle obtained in a closed-form in [14] is also plotted in Fig. 17b.
Results are qualitatively close to each other. When 1:2 inter-
nal resonance occurs, frequency growth slows down. After pass-
ing through the high-frequency and chaotic regions the frequency
and the amplitude decrease.

CONCLUSIONS
Nonlinear development of divergence, single mode and cou-

pled mode flutter of plate have been numerically studied. Ampli-
tudes and frequencies of flutter oscillations have been obtained.
In case of high Mach numbers excellent correlation with classi-
cal results based on piston theory has been achieved. In case of
low supersonic flow four types of flutter oscillations have been
observed: first mode limit cycle, limit cycle that includes in-
ternal 1:2 resonance, high-frequency periodic oscillations, and
non-periodic (quasi-chaotic) plate oscillations. Coupled mode
and single mode flutter regions are separated on Mach number
axis by a gap, where the plate is stable.

It is shown that amplitude of flutter oscillations at low su-
personic Mach numbers is typically higher than that of coupled
mode flutter, in accordance with results of [14]. Maximum stress
amplitude is achieved at chaotic oscillations and can be much
higher than for other flutter types. This is due to higher mode
shapes dominating in shape of the plate oscillations.
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