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Abstract: The paper considers the homogenized model of the layered creep media. It is shown
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1. INTRODUCTION

A large number of composite material models was con-
sidered in the theory of homogenization. The composite
material is given by its periodic structure and by physical
characteristics of its components. The goal of the homog-
enization is to derive average properties of the composite
medium from the properties of these components. When
modeling the medium, this approach allows to significantly
decrease the computation time, because it allows to use
a sparse computational mesh for the whole homogenized
medium instead of a fine mesh on each medium com-
ponent. Classical works on the topic (Sanchez-Palencia
(1980), Bakhvalov and Panasenko (1989), Oleinik et al.
(1992)) consider the models described by the partial dif-
ferential equations. More recent studies also adress the
models with integro-differential equations. Homogeniza-
tion for a creep media was examined by Orlik (2000). The
procedure of homogenization was implemented here for
the viscoelastic medium described by integro-differential
relations. The expressions for the homogenized medium
properties were obtained for a periodic in three dimen-
sions media, but this expressions were rather complex
and they needed for considerable computation resources,
because they required solving auxiliary problems on the
cell of periodicity. Another approach to homogenization

of a creep composite was proposed by Shamaev and Shu-
milova (2016) for a layered medium. Here, relatively simple
expressions were derived for determining the homogenized
medium properties. These expressions only assumed solu-
tion of one-dimensional integral equations.

The present paper implements the homogenization ap-
proach proposed by Shamaev and Shumilova (2016) for the
layered creep media. Cubic sample deformations are ex-
amined for different load types. Simulations are performed
both for the layred media directly and for the homogenized
model. The results are compared. Our goal is to determine
the applicabilty of the homogenized model for the creep
composite modeling for the sufficiently long observation
times. In both cases (direct computations and the homog-
enized model), the simulation is performed with the use
of the time steps method proposed by Konstantinova and
Chernopazov (2004, 2006, 2007).

2. PROBLEM STATEMENT

The considered layered media consists of two materials.
Each of these materials obeys the rheological law of hered-
itary creep, see Konstantinova and Chernopazov (2004):
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Fig. 1. Scheme of the layered medium

sij(t) = sij(0) + 2Geij(t)

−
t∫

0

KC(σ̃(τ), t− τ)sij(τ)dτ ;

p(t) = p(0) +Bθ(t)−
t∫

0

KV (σ̃(τ), t− τ)p(τ)dτ,

(1)

where p = 1
3σ

i
i is the pressure, θ = εii is the volume

deformation, sij and eij are the components of deviators
of the stress tensor σij and of the strain tensor εij defined
by

sij = σij − pδij ,

eij = εij −
1

3
θδij ,

where δij is the Kronecker delta, B =
E

3(1− 2ν)
is the bulk

modulus, G =
E

2(1 + ν)
is the shear modulus (E and ν are

the Young’s modulus and Poisson’s ratio, which describe
the elastic properties of the material), KC and KV are the
shear and bulk creep kernels, σ̃(τ) is the stress tensor at
the time instant τ . The creep kernels are considered to be
the Abel kernels:

Ki(σ̃(τ), t− τ) = δi(σ̃(τ))(t− τ)α, i = 1, 2, (2)

where α is the material constant, δi(·) is some function.
The subscript 1 denotes the first creep material, and the
subscript 2 denotes the second one. Values −1 < α < 0
correspond to physically possible cases. For simplicity, we
assume

δC ≡ const,

δV ≡ const.

For further considerations, the stress-strain relations (1)
should be reversed. As a result of this inversion, the media
strains will be the integrand instead of the media stresses.
Let us rewrite the stress-strain relation (1) as follows

eij =
1

2µ
(sij +Kc(t) ∗ sij),

θ =
1

K
(p+Kv(t) ∗ p),

where Kc(t) = δct
α, Kv(t) = δvt

α are the kernels of shear
and bulk creep, the symbol ∗ stands for the convolution of
two functions, K ≡ B, µ ≡ G. Then, the inversion is given
by the following expression for each material (the index of
the material is omitted here):

σij = aijkhε
kh + dijkh(t) ∗ εkh, (3)

aijkh = λδijδkh + µ(δikδjh + δihδjk), (4)

dijkh(t) = −
(
kg −

1

3

)
Gc(t)δijδkh

− 1

2
Gc(t)(δikδjh + δihδjk).

(5)

The kernels of shear and bulk relaxation have the form

Gc(t) = C0Rα(β, t),

Gv(t) = kgGc(t),

where Rα(β, t) is the Rabotnov function, see Rabotnov
(1969). This function is expressed through the generalized
Mittag-Leffler function as in Gorenflo et al. (2014):

Rα(β, t) = tαEα+1,α+1(βt
α+1),

where the Mittag-Leffler function

Eα1,α2(t) =

∞∑
n=0

tn

Γ(α1n+ α2)
, (6)

and Γ(t) is the Eulerian Gamma function. The parameters
C0, kg, β are defined below.

3. COMPUTATIONAL ALGORITHM

The method of time steps (Konstantinova and Chernopa-
zov (2004, 2006, 2007)) is used for determining the strains
as functions of time under the given stresses applied to the
sample. The homogenized stress-strain relation is needed
on the each computational step, so, the method of ho-
mogenization proposed by Shamaev and Shumilova (2016)
is used to determine the average strain tensor and the
average creep kernels of the layered medium.

3.1 The method of time steps in the problem of layered
creep composites homogenization

Let the creep kernels be linear in stresses or be independent
from them. The original stress-strain relation can be
represented in the more general tensor form

εij(t) = bijhlσhl +

t∫

0

dijhl(t− τ)σhl(τ)dτ.

The constitutive equation is written in the form

σij(tk) = a
(k,k−1)
ijhl εhl(tk)−

tk−1∫

0

g
(k,k−1)
ijhl (t−τ)σhl(τ)dτ (7)

with the use of the approximate equality
tk∫

tk−1

dijhl(tk − τ)σhl(τ)dτ ∼= d̃
(k,k−1)
ijhl σhl(tk),

where the value of d̃ijkl is known from the problem
statement.

According to the method of time steps from Konstantinova
and Chernopazov (2004), we assume

Ξ
(k−1)
ij =

tk−1∫

0

g
(k,k−1)
ijhl (tk, τ)σhl(τ)dτ. (8)
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The equilibrium equations at time t = tk take the form

∂σij

∂xi
(x, tk) ≡

∂

∂xi
(a

(k,k−1)
ijhl εhl(tk)− Ξ

(k−1)
ij ) = fj(x), (9)

where fj(x) are the components of the body forces, Ξ
(k−1)
ij

is the known function that is obtained from the values
calculated at the previous time steps.

3.2 Computation of the homogenized stress-strain relations

The homogenized medium characteristics are defined as
follows, see Shamaev and Shumilova (2016). First, for each
material we calculate the following values:

• λi =
Eiνi

(1+νi)(1−2νi)
is the first Lame parameter, Pa,

• µi =
Ei

2(1+νi)
is the second Lame parameter (the shear

modulus), Pa,
• Ki = λi +

2
3µi is the module of full compression (the

bulk modulus of elasticity), Pa,
• C0,i = 2µiδc,iΓ(1 + α) are the constant multipliers in
the kernels of the share relaxation, Pa · h−α−1.

• kg,i =
Kiδv,i

2µiδc,i
are the dimensionless constants of

proportionality in the kernels of the share and bulk
relaxation,

• βi = −δc,iΓ(1+α) are the parameters of the Rabotnov
function, h−α−1,

and the following auxiliary constants:

• a1 = λ1 + 2µ1, a2 = λ2 + 2µ2,
• A = a1H + a2(1−H), B = µ1H + µ2(1−H),

• c11 = (a2−a1)(1−H)
A , c22 = (λ2−λ1)(1−H)

A ,

c12 = (µ2−µ1)(1−H)
B .

Here again, the subscripts 1 and 2 correspond to the first
and second materials respectively.

Then after reversing the given rheology relations, they are
written in the tensor form:

σij(x, t) = aijkh(x)εkh(x, t) + dijkh(x, t) ∗ εkh(x, t),
The elastic tensor aijkh, the strain tensor εkh(x, t) and the
creep tensor dijkh now depend on the spatial coordinate x,
because the medium has layers. Depending on the value of
coordinate x, the properties of the first or second material
are used. As a result, all tensors oscillate as periodic
piecewise constant functions.

Here is the function that defines the elastic oscillating
tensor:

aijkh(x) = λ(x)δijδkh + µ(x)(δikδjh + δihδjk).

The function that defines the creep oscillating tensor, is
expressed as:

dijkh(x, t) = −
(
kg(x)−

1

3

)
Gc(x, t)δijδkh

−1

2
Gc(x, t)(δikδjh + δihδjk).

(10)

In contrast to the expressions (3), (4), and (5), now σij ,
aijkh, and dijkh depend on the spatial coordinate x.

We need three auxiliary functions pij(t) for calculating
the averaged elasticity and creep tensors. In order to find
these functions, the following integral equations should be

solved (the indexes (1) and (2) denote the tensor values in
the first and second media correspondingly):

p11(t) +
1

A

(
Hd

(1)
1111(t) + (1−H)d

(2)
1111(t)

)
∗ p11(t)

=
1−H

A2

(
−a2d

(1)
1111(t) + a1d

(2)
1111(t)

)
,

(11)

p22(t) +
1

A

(
Hd

(1)
1111(t) + (1−H)d

(2)
1111(t)

)
∗ p22(t)

= − 1

A

(
c22(Hd

(1)
1111(t) + (1−H)d

(2)
1111(t))

+(1−H)(d
(1)
1122(t)− d

(2)
1122(t))

)
,

(12)

p12(t) +
1

B

(
Hd

(1)
1212(t) + (1−H)d

(2)
1212(t)

)
∗ p12(t)

=
1−H

B2

(
−µ2d

(1)
1212(t) + µ1d

(2)
1212(t)

)
.

(13)

Thus, it is necessary to solve three integral equations of
the type

f(t) +

∫ t

0

K(t− s)f(s)ds = g(t), t ∈ [0, b], (14)

where the functions K(t) and g(t) are given, and f(t)
should be found.

For the numerical solution of (14), the interval [0, T ] is
divided into N subintervals that have the lengths h = T

N .

These subintervals have ends in points xi = T
N i, where

i = 0, ..., N .

Functions f and g are given as the vector-columns

fN = {f(x0), f(x1), ..., f(xN )}T ,

gN = {g(x0), g(x1), ..., g(xN )}T .

The trapezoid method is used for the numerical approxi-
mation of the integral in (14) on intervals [xi, xi+1]. Then,
the original equation (14) takes the form of the system of
linear equations

AfN = gN , (15)

where the matrix A is expressed according to

A =




1 0 0 0 . 0
hK(x1 − x0)

2

hK(0)

2
+ 1 0 0 . 0

. . . . . .
hK(xi − x0)

2
hK(xi − x1) . . . 0

. . . . . .
hK(xN − x0)

2
hK(xN − x1) . . .

hK(0)

2
+ 1




.

It is evident that for the regular convolution kernels K(t)
and for the sufficiently small step h, the matrix A is close
to the diagonal one, with all the diagonal elements equal
to 1. For kernels with a singularity of the form tα, α < 0,
the integration should be slightly different at the first step
(since K(0) = ∞).

Let us consider the auxiliary elastic tensors, see Shamaev
and Shumilova (2016):
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εij(Z
kh) =

1

2

(
∂Zkh

i

∂xj
+

∂Zkh
j

∂xi

)
,

where

Z11(y) = (c11Z(y), 0, 0),

Z22(y) = Z33(y) = (c22Z(y), 0, 0),

Z12(y) = Z21(y) = (0, c12Z(y), 0),

Z13(y) = Z31(y) = (0, 0, c12Z(y)),

Z23(y) = Z32(y) = (0, 0, 0),

y ≡ x1. Here the function

Z(y) =




Hy

1−H
, 0 � y < (1−H)/2,

1

2
− y, (1−H)/2 � y < (1 +H)/2,

(y − 1)H

1−H
, (1 +H)/2 � y � 1;

so that

Z ′ =

{
H

1−H
, in the material 1,

−1, in the material 2.

If i �= 1 and j �= 1, then εij(Z
kh) = 0. Thus, the non-

zero components are ε11(Z
kh), ε12(Z

kh), ε13(Z
kh), and

the components obtained from them by the i, j indexes
permutations. The latter holds true due to the symmetry
by these indexes. Substituting into the formulae, we get
the expressions for these components:

ε11(Z
kh) =




c11Z
′ 0 0

0 c22Z
′ 0

0 0 c22Z
′


 ,

ε12(Z
kh) = ε21(Z

kh) =




0 c12Z
′/2 0

c12Z
′/2 0 0

0 0 0


 ,

ε13(Z
kh) = ε31(Z

kh) =




0 0 c12Z
′/2

0 0 0
c12Z

′/2 0 0


 .

Likewise, the creep tensor components εij(W
kh) are equal

to zero if i �= 1 and j �= 1. The other components are equal
to

ε11(W
kh) =




p11(t)Z
′ 0 0

0 p22(t)Z
′ 0

0 0 p22(t)Z
′


 ,

ε12(W
kh) = ε21(W

kh) =




0 p12(t)Z
′/2 0

p12(t)Z
′/2 0 0

0 0 0


 ,

ε13(W
kh) = ε31(W

kh) =




0 0 p12(t)Z
′/2

0 0 0
p12(t)Z

′/2 0 0


 .

Finally, the homogenized stress-strain relations have the
following form (the sign ·̂ denotes an averaged value):

σ̂ij(x1, x2, x3, t) = Âijkhε̂kh(x1, x2, x3, t)

+ B̂ijkh(t) ∗ ε̂kh(x1, x2, x3, t),
(16)

where Âijkh and B̂ijkh(t) are the averaged values of the
tensors

Aijkh(x1) = aijkh(x1) + aijlm(x1)εlm(Zkh(y)),

Bijkh(x1, t) = dijkh(x1, t) + dijlm(x1, t)εlm(Zkh(y))

+aijlm(x1)εlm(W kh(y, t)) + dijlm(x1, t) ∗ εlm(W kh(y, t))

calculated according to the formula

F̂ = (1−H)F1 +HF2

(the indexes 1 and 2 denote the values of F in materials 1
and 2 correspondingly).

The oscillating stress values are reconstructed from the
known mean strains ε̂kh(x1, x2, x3, t):

σij(x1, x2, x3, t) = Aijkh(x1)ε̂kh(x1, x2, x3, t)

+Bijkh(x1, t) ∗ ε̂kh(x1, x2, x3, t).
(17)

Note that the tensors Aijkh and Bijkh satisfy the symme-
try relations

Aijkh = Ajikh = Akhij , Bijkh = Bjikh = Bkhij .

Moreover, only the following (and the ones obtained from
their symmetry) components are non-zero:

A1111, A2222 = A3333, A1122 = A1133,

A2233, A1212 = A1313, A2323,

with
A2222 = 2A2233 +A2323.

Similarly, only the following (and the ones obtained from
their symmetry) creep tensor components are non-zero:

B1111, B2222 = B3333, B1122 = B1133,

B2233, B1212 = B1313, B2323,

B2222 = 2B2233 +B2323.

The same holds for the averaged tensors Âijkh and B̂ijkh.

Therefore, only five independent components of the tensors
A and B should be calculated:

A1111, A1122, A2233, A1212, A2323;

B1111(t), B1122(t), B2233(t), B1212(t), B2323(t).

So the resulting creep medium is transversely isotropic.

4. LAYERED MEDIA MODELING

For verification of the described method, the results of
numerical calculations for the homogenized medium model
are compared with the results of computations for the
model, that does not use the homogenization. The medium
consists of layers of two different materials. Different load
types are investigated. The cube sample is examined, that
has size 1 × 1 × 1 (all quantities are dimensionless). This
cube contains 10 layers of the material 1 and 10 layers of
the material 2 having the same size (Fig. 2). The problem
is solved in dimensionless form. The following materials
properties are used:

E1 = 2000; ν1 = 0.4; δc1 = 1; δv1 = 1;α1 = 0.2;

E2 = 1000; ν2 = 0.2; δc2 = 1; δv2 = 1;α2 = 0.78.

Note that since α is positive, the creep and relaxation ker-
nels of each layer do not have singularities. Influence of the
singularity on the computation accuracy is not considered
in this study and should be examined separately, as well as
the influence of the integration method in a neighborhood
of the singularity.

Three problem statements are considered. In the first one,
the equilibrium equations are solved for the medium with
the directly modeled layers. The finite elements mesh
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Fig. 2. Finite element mesh in the cases of the direct
layered medium model (a), the homogenized model
with the same mesh (b), and the homogenized model
consisting of only one element (c)

consists of 8000 hexahedral elements: 10 × 10 in the
horizontal plane and 4 elements per each layer in the
vertical direction (see Fig. 2a). In the second one, the
homogenized model of the medium is used on the same
mesh (see Fig. 2b). In the third problem statement, the
homogenized model of the medium is used again, but the
mesh consists of only one finite element. (Fig. 2c). The
problems examined below lead to the homogeneous stress-
strain state in the averaged material model. Therefore, the
results obtained in the second and in the third cases must
coincide. The 4 orders mesh size reduction demonstrates
the practical efficiency of the method of homogenization.

The computation is performed on the time interval t =
0 . . . T with the variable adaptive integration step. The
first step is equal to ∆t = 0.01. Homogenized tensors with
100 steps per period are used at the results presented below
for the homogenized model. All the problems are solved in
a geometrically linear formulation.

The numerical experiments are performed for the following
types of external loads: the uniaxial stress orthogonal
to the layers, the uniaxial stress along the layers, the
shear parallel to the layers, the shear orthogonal to the
layers, the full compression. For all this typical cases, the
difference in strains is less than 5% for the exact model as
compared to the homogenized one for the typical process
times. More details are given below on the results of
calculations in the cases of the uniaxial stress orthogonal
to the layers, the uniaxial stress along the layers, and the
shear parallel to the layers.

4.1 Uniaxial stress orthogonal to the layers

The bottom face of the cube is rigidly fixed (the displace-
ments are set to zero). The stretching stress σ22 = 10
is applied to the top face. The case of uniaxial tension
corresponds to the stretching-compression experiments for
material samples. Each layer tends to change in cross-
sectional size in different degree due to the difference
in the Poisson’s ratio. As a result, the solution of this
problem for the layered medium becomes essentially three-
dimensional. The following problem is considered with
the purpose to obtain simpler solutions. The additional
condition of zero horizontal displacements u1 = u3 = 0 is
imposed on all points of the medium. This corresponds to
the condition ε11 = ε33 = 0 for the strain tensor compo-
nents. The solution of this problem problem depends only
on one spatial coordinate y. Thus, the conditions corre-
spond to the uniaxial medium deformation. The calculated
strain tensor component ε22(t) is shown in Fig. 3 for
the described above three problem statements. Here and
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Fig. 3. The strain tensor component ε22(t) for three
problem statements

below in the paper, the calculated for the layered model
strain tensor is then averaged over the layers. Therefore,
the resulting strain tensor component ε22(t) shown in the
figure is constant in space for the all three cases. There is
an exact match for different meshes for the homogenized
model. The difference between the homogenized and non-
homogenized models is 3.2% at the moment of time t = T ,
where T = 3.

4.2 Uniaxial stress along the layers

The rear face of the cube is rigidly fixed (the displacements
are set to zero). The stretching stress σ11 = 10 is applied to
the front face. As in the previous example, the additional
condition of zero horizontal displacements orthogonal to
the load direction u2 = u3 = 0 is imposed on the all
medium points. This condition corresponds to the strain
tensor components ε22 = ε33 = 0. It allows to simulate the
uniaxial deformation. The resulting strain tensor compo-
nent ε11(t) is shown in Fig. 4 for the three problem state-
ments described above. There is an exact match for dif-
ferent meshes for the homogenized model. The difference
between the homogenized and non-homogenized models is
1.2% at the moment of time t = T .
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Fig. 4. The strain tensor component ε11(t) for three
problem statements

4.3 Shear parallel to the layers

The bottom face of the cube is rigidly fixed (the displace-
ments are set to zero). The tangent stress σ12 = 10 is ap-
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Fig. 2. Finite element mesh in the cases of the direct
layered medium model (a), the homogenized model
with the same mesh (b), and the homogenized model
consisting of only one element (c)

consists of 8000 hexahedral elements: 10 × 10 in the
horizontal plane and 4 elements per each layer in the
vertical direction (see Fig. 2a). In the second one, the
homogenized model of the medium is used on the same
mesh (see Fig. 2b). In the third problem statement, the
homogenized model of the medium is used again, but the
mesh consists of only one finite element. (Fig. 2c). The
problems examined below lead to the homogeneous stress-
strain state in the averaged material model. Therefore, the
results obtained in the second and in the third cases must
coincide. The 4 orders mesh size reduction demonstrates
the practical efficiency of the method of homogenization.

The computation is performed on the time interval t =
0 . . . T with the variable adaptive integration step. The
first step is equal to ∆t = 0.01. Homogenized tensors with
100 steps per period are used at the results presented below
for the homogenized model. All the problems are solved in
a geometrically linear formulation.

The numerical experiments are performed for the following
types of external loads: the uniaxial stress orthogonal
to the layers, the uniaxial stress along the layers, the
shear parallel to the layers, the shear orthogonal to the
layers, the full compression. For all this typical cases, the
difference in strains is less than 5% for the exact model as
compared to the homogenized one for the typical process
times. More details are given below on the results of
calculations in the cases of the uniaxial stress orthogonal
to the layers, the uniaxial stress along the layers, and the
shear parallel to the layers.

4.1 Uniaxial stress orthogonal to the layers

The bottom face of the cube is rigidly fixed (the displace-
ments are set to zero). The stretching stress σ22 = 10
is applied to the top face. The case of uniaxial tension
corresponds to the stretching-compression experiments for
material samples. Each layer tends to change in cross-
sectional size in different degree due to the difference
in the Poisson’s ratio. As a result, the solution of this
problem for the layered medium becomes essentially three-
dimensional. The following problem is considered with
the purpose to obtain simpler solutions. The additional
condition of zero horizontal displacements u1 = u3 = 0 is
imposed on all points of the medium. This corresponds to
the condition ε11 = ε33 = 0 for the strain tensor compo-
nents. The solution of this problem problem depends only
on one spatial coordinate y. Thus, the conditions corre-
spond to the uniaxial medium deformation. The calculated
strain tensor component ε22(t) is shown in Fig. 3 for
the described above three problem statements. Here and
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Fig. 3. The strain tensor component ε22(t) for three
problem statements

below in the paper, the calculated for the layered model
strain tensor is then averaged over the layers. Therefore,
the resulting strain tensor component ε22(t) shown in the
figure is constant in space for the all three cases. There is
an exact match for different meshes for the homogenized
model. The difference between the homogenized and non-
homogenized models is 3.2% at the moment of time t = T ,
where T = 3.

4.2 Uniaxial stress along the layers

The rear face of the cube is rigidly fixed (the displacements
are set to zero). The stretching stress σ11 = 10 is applied to
the front face. As in the previous example, the additional
condition of zero horizontal displacements orthogonal to
the load direction u2 = u3 = 0 is imposed on the all
medium points. This condition corresponds to the strain
tensor components ε22 = ε33 = 0. It allows to simulate the
uniaxial deformation. The resulting strain tensor compo-
nent ε11(t) is shown in Fig. 4 for the three problem state-
ments described above. There is an exact match for dif-
ferent meshes for the homogenized model. The difference
between the homogenized and non-homogenized models is
1.2% at the moment of time t = T .
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Fig. 4. The strain tensor component ε11(t) for three
problem statements

4.3 Shear parallel to the layers

The bottom face of the cube is rigidly fixed (the displace-
ments are set to zero). The tangent stress σ12 = 10 is ap-
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Fig. 5. The strain tensor component ε12(t) for three
problem statements

plied to the top face. The additional condition u2 = u3 = 0
is imposed on the all medium points. This condition cor-
responds to the strain tensor components ε22 = ε33 = 0.

The strain tensor component ε12(t) is shown in Fig. 5.
As in the previous examples, there is an exact match
for different meshes for the homogenized model. The
difference between the homogenized and non-homogenized
models is 4.3% at the moment of time t = T . The presented
in the figure deformation is a result of averaging on the
layers. The layered medium experiences a form distortion,
which occurs due to the difference in properties of layers.

4.4 Comparison with naive homogenization

In some technical applications the naive homogenization is
used. In this case the effective tensors and creep kernels are
specified as the simple arithmetic means of the correspond-
ing tensors and kernels of the non-homogenized layers.
The results obtained in this case are compared with the
exact homogenization results. This comparison is shown
in Fig. 6. The shear load along the layers is applied to the
sample. The resulting shear strain is shown. It is shown
that the accuracy of the naive homogenization becomes
inappropriate from the very beginning of the considered
load time interval.

5. CONCLUSION

In the present paper the method of homogenization of
Shamaev and Shumilova (2016) is used to create the
homogenized model of the layered creep media. The time
steps method of Konstantinova and Chernopazov (2004) is
used for simulation of different loads applied to the cubic
sample on considerable time intervals. It is shown that the
homogenized model is sufficiently accurate. The difference
is less than 5% as compared with the results obtained with
the direct computations when non-homogenized model is
utilized. This tolerance holds for rather long time. The
sample can be deformed by 10-15% by the end of the
considered time period.

An inverse number of layers serves as a small parame-
ter in the homogenization theory. The proximity of the
homogenized solution to the original one is estimated in
terms of this small parameter. Thus, it is critical to a
homogenization theory application, that the number of
layers is sufficiently large. Here, it is shown that 10 layers

Fig. 6. Naive and exact homogenizations

is sufficient for obtaining the described accuracy of the
homogenized model. Application of homogenized model
allows to decrease the number of finite elements by 4
orders. This leads to the same decrease of the computation
time and required computer memory.
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